Enhancing Sodium-Ion Transport in LTA Zeolite/PEO Composite Polymer Electrolytes through Cation Adsorption

The incorporation of ceramic fillers into polymer electrolytes has proven to be effective in bolstering their mechanical robustness, improving ionic transport efficiency, and ensuring enhanced interface integrity. Nonetheless, the current repertoire of suitable ceramic fillers for such applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-10, Vol.7 (19), p.8964-8972
Hauptverfasser: Qu, Shangqing, Cai, Guohong, Qiao, Xianji, Li, Guobao, Sun, Junliang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8972
container_issue 19
container_start_page 8964
container_title ACS applied energy materials
container_volume 7
creator Qu, Shangqing
Cai, Guohong
Qiao, Xianji
Li, Guobao
Sun, Junliang
description The incorporation of ceramic fillers into polymer electrolytes has proven to be effective in bolstering their mechanical robustness, improving ionic transport efficiency, and ensuring enhanced interface integrity. Nonetheless, the current repertoire of suitable ceramic fillers for such applications is still somewhat limited. Zeolites, renowned for their pronounced adsorption capabilities and potential as sodium-ion conductors, have not been extensively studied regarding their impact on the electrochemical performance of composite electrolytes. In this work, we have developed a novel composite polymer electrolyte (CPE) based on poly­(ethylene oxide) (PEO) integrated with LTA zeolite nanoparticles. The cation adsorption on the surface of LTA zeolite particles introduces additional ion migration pathways, while the interaction between hydroxyl groups and ether atoms of the PEO matrix weakens the coordination between Na+ and PEO, thereby promoting sodium-ion mobility within the LTA/PEO CPE. The synergistic effect of cation adsorption and Lewis acid–base action on the zeolite surface yields an impressive sodium-ion transference number of 0.44. The integration of the LTA zeolite into the composite electrolyte diminishes the interfacial resistance against sodium metal electrodes, effectively mitigating sodium dendrite formation. The NVP||PEO-10||Na battery incorporating 10 wt % LTA zeolites exhibits a capacity retention of nearly 88% after 100 cycles at 0.2 C, which is significantly better than those without the zeolite.
doi_str_mv 10.1021/acsaem.4c02012
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_4c02012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b5836065</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-e4d36d7b5b9dc004f22066d6095b1a69bfca6d665e71fd8e890502a9b22384813</originalsourceid><addsrcrecordid>eNp1kDFrwzAQhUVpoSHN2llzwclJsRVrDMZtA4EE6i5djCzJiYMtGUkZ8u-rkAxdOt17x73H8SH0SmBOgJKFkF7oYZ5KoEDoA5rQbJUmwBl9_KOf0cz7EwAQThjlfIJOpTkKIztzwF9Wdech2ViDKyeMH60LuDN4W63xj7Z9F_RiX-5wYYfR-ujw3vaXQTtc9loGF03QHoejs-fDERcidLFqrbx141W-oKdW9F7P7nOKvt_LqvhMtruPTbHeJoJkPCQ6VUumVk3WcCUB0pZSYEwx4FlDBONNK0W0LNMr0qpc5xwyoII3lC7zNCfLKZrfeqWz3jvd1qPrBuEuNYH6Cqu-warvsGLg7RaI-_pkz87E9_47_gUfTWzl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Sodium-Ion Transport in LTA Zeolite/PEO Composite Polymer Electrolytes through Cation Adsorption</title><source>ACS Publications</source><creator>Qu, Shangqing ; Cai, Guohong ; Qiao, Xianji ; Li, Guobao ; Sun, Junliang</creator><creatorcontrib>Qu, Shangqing ; Cai, Guohong ; Qiao, Xianji ; Li, Guobao ; Sun, Junliang</creatorcontrib><description>The incorporation of ceramic fillers into polymer electrolytes has proven to be effective in bolstering their mechanical robustness, improving ionic transport efficiency, and ensuring enhanced interface integrity. Nonetheless, the current repertoire of suitable ceramic fillers for such applications is still somewhat limited. Zeolites, renowned for their pronounced adsorption capabilities and potential as sodium-ion conductors, have not been extensively studied regarding their impact on the electrochemical performance of composite electrolytes. In this work, we have developed a novel composite polymer electrolyte (CPE) based on poly­(ethylene oxide) (PEO) integrated with LTA zeolite nanoparticles. The cation adsorption on the surface of LTA zeolite particles introduces additional ion migration pathways, while the interaction between hydroxyl groups and ether atoms of the PEO matrix weakens the coordination between Na+ and PEO, thereby promoting sodium-ion mobility within the LTA/PEO CPE. The synergistic effect of cation adsorption and Lewis acid–base action on the zeolite surface yields an impressive sodium-ion transference number of 0.44. The integration of the LTA zeolite into the composite electrolyte diminishes the interfacial resistance against sodium metal electrodes, effectively mitigating sodium dendrite formation. The NVP||PEO-10||Na battery incorporating 10 wt % LTA zeolites exhibits a capacity retention of nearly 88% after 100 cycles at 0.2 C, which is significantly better than those without the zeolite.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c02012</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-10, Vol.7 (19), p.8964-8972</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a159t-e4d36d7b5b9dc004f22066d6095b1a69bfca6d665e71fd8e890502a9b22384813</cites><orcidid>0000-0003-3061-193X ; 0000-0003-4074-0962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.4c02012$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.4c02012$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Qu, Shangqing</creatorcontrib><creatorcontrib>Cai, Guohong</creatorcontrib><creatorcontrib>Qiao, Xianji</creatorcontrib><creatorcontrib>Li, Guobao</creatorcontrib><creatorcontrib>Sun, Junliang</creatorcontrib><title>Enhancing Sodium-Ion Transport in LTA Zeolite/PEO Composite Polymer Electrolytes through Cation Adsorption</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The incorporation of ceramic fillers into polymer electrolytes has proven to be effective in bolstering their mechanical robustness, improving ionic transport efficiency, and ensuring enhanced interface integrity. Nonetheless, the current repertoire of suitable ceramic fillers for such applications is still somewhat limited. Zeolites, renowned for their pronounced adsorption capabilities and potential as sodium-ion conductors, have not been extensively studied regarding their impact on the electrochemical performance of composite electrolytes. In this work, we have developed a novel composite polymer electrolyte (CPE) based on poly­(ethylene oxide) (PEO) integrated with LTA zeolite nanoparticles. The cation adsorption on the surface of LTA zeolite particles introduces additional ion migration pathways, while the interaction between hydroxyl groups and ether atoms of the PEO matrix weakens the coordination between Na+ and PEO, thereby promoting sodium-ion mobility within the LTA/PEO CPE. The synergistic effect of cation adsorption and Lewis acid–base action on the zeolite surface yields an impressive sodium-ion transference number of 0.44. The integration of the LTA zeolite into the composite electrolyte diminishes the interfacial resistance against sodium metal electrodes, effectively mitigating sodium dendrite formation. The NVP||PEO-10||Na battery incorporating 10 wt % LTA zeolites exhibits a capacity retention of nearly 88% after 100 cycles at 0.2 C, which is significantly better than those without the zeolite.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFrwzAQhUVpoSHN2llzwclJsRVrDMZtA4EE6i5djCzJiYMtGUkZ8u-rkAxdOt17x73H8SH0SmBOgJKFkF7oYZ5KoEDoA5rQbJUmwBl9_KOf0cz7EwAQThjlfIJOpTkKIztzwF9Wdech2ViDKyeMH60LuDN4W63xj7Z9F_RiX-5wYYfR-ujw3vaXQTtc9loGF03QHoejs-fDERcidLFqrbx141W-oKdW9F7P7nOKvt_LqvhMtruPTbHeJoJkPCQ6VUumVk3WcCUB0pZSYEwx4FlDBONNK0W0LNMr0qpc5xwyoII3lC7zNCfLKZrfeqWz3jvd1qPrBuEuNYH6Cqu-warvsGLg7RaI-_pkz87E9_47_gUfTWzl</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Qu, Shangqing</creator><creator>Cai, Guohong</creator><creator>Qiao, Xianji</creator><creator>Li, Guobao</creator><creator>Sun, Junliang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3061-193X</orcidid><orcidid>https://orcid.org/0000-0003-4074-0962</orcidid></search><sort><creationdate>20241014</creationdate><title>Enhancing Sodium-Ion Transport in LTA Zeolite/PEO Composite Polymer Electrolytes through Cation Adsorption</title><author>Qu, Shangqing ; Cai, Guohong ; Qiao, Xianji ; Li, Guobao ; Sun, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-e4d36d7b5b9dc004f22066d6095b1a69bfca6d665e71fd8e890502a9b22384813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Shangqing</creatorcontrib><creatorcontrib>Cai, Guohong</creatorcontrib><creatorcontrib>Qiao, Xianji</creatorcontrib><creatorcontrib>Li, Guobao</creatorcontrib><creatorcontrib>Sun, Junliang</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Shangqing</au><au>Cai, Guohong</au><au>Qiao, Xianji</au><au>Li, Guobao</au><au>Sun, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Sodium-Ion Transport in LTA Zeolite/PEO Composite Polymer Electrolytes through Cation Adsorption</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-10-14</date><risdate>2024</risdate><volume>7</volume><issue>19</issue><spage>8964</spage><epage>8972</epage><pages>8964-8972</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The incorporation of ceramic fillers into polymer electrolytes has proven to be effective in bolstering their mechanical robustness, improving ionic transport efficiency, and ensuring enhanced interface integrity. Nonetheless, the current repertoire of suitable ceramic fillers for such applications is still somewhat limited. Zeolites, renowned for their pronounced adsorption capabilities and potential as sodium-ion conductors, have not been extensively studied regarding their impact on the electrochemical performance of composite electrolytes. In this work, we have developed a novel composite polymer electrolyte (CPE) based on poly­(ethylene oxide) (PEO) integrated with LTA zeolite nanoparticles. The cation adsorption on the surface of LTA zeolite particles introduces additional ion migration pathways, while the interaction between hydroxyl groups and ether atoms of the PEO matrix weakens the coordination between Na+ and PEO, thereby promoting sodium-ion mobility within the LTA/PEO CPE. The synergistic effect of cation adsorption and Lewis acid–base action on the zeolite surface yields an impressive sodium-ion transference number of 0.44. The integration of the LTA zeolite into the composite electrolyte diminishes the interfacial resistance against sodium metal electrodes, effectively mitigating sodium dendrite formation. The NVP||PEO-10||Na battery incorporating 10 wt % LTA zeolites exhibits a capacity retention of nearly 88% after 100 cycles at 0.2 C, which is significantly better than those without the zeolite.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c02012</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3061-193X</orcidid><orcidid>https://orcid.org/0000-0003-4074-0962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-10, Vol.7 (19), p.8964-8972
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_4c02012
source ACS Publications
title Enhancing Sodium-Ion Transport in LTA Zeolite/PEO Composite Polymer Electrolytes through Cation Adsorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Sodium-Ion%20Transport%20in%20LTA%20Zeolite/PEO%20Composite%20Polymer%20Electrolytes%20through%20Cation%20Adsorption&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Qu,%20Shangqing&rft.date=2024-10-14&rft.volume=7&rft.issue=19&rft.spage=8964&rft.epage=8972&rft.pages=8964-8972&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c02012&rft_dat=%3Cacs_cross%3Eb5836065%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true