Research Progress of Lignin-Derived Functional Materials for Electrochemical Energy Storage

Lignin, a natural polymer material, has demonstrated significant potential for advancement in the field of electrochemical energy storage. The utilization of lignin-derived functional materials has greatly improved the performance and durability of devices for electrochemical energy storage while si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-12, Vol.7 (24), p.11610-11632
Hauptverfasser: Luo, Qitian, Zeng, Taiping, Gu, Kai, Lin, Qiao, Yang, Weiqing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11632
container_issue 24
container_start_page 11610
container_title ACS applied energy materials
container_volume 7
creator Luo, Qitian
Zeng, Taiping
Gu, Kai
Lin, Qiao
Yang, Weiqing
description Lignin, a natural polymer material, has demonstrated significant potential for advancement in the field of electrochemical energy storage. The utilization of lignin-derived functional materials has greatly improved the performance and durability of devices for electrochemical energy storage while simultaneously mitigating environmental pollution. The present thesis investigates the application of lignin-derived electrochemical functional materials, including electrode materials, electrolytes, conductive agents, and binders. When employed as electrodes, lignin-derived carbon materials exhibit remarkable modifiability (doping, cross-linking, and composite). Importantly, the presence of heteroatoms and active sites for cross-linking plays a crucial role in regulating the disorder within the carbon layer and controlling pore parameters. Lignin-based polymer materials, when employed in non-electrochemically active storage functional components such as electrolytes, separators, and binders, demonstrate exceptional mechanical strength, superior adhesion properties, and enhanced ionic conductivity due to their distinctive phenylpropane structure and functional groups (hydroxyl, carboxyl, and carbonyl). Additionally, we conducted a comprehensive analysis of the current market prospects for lignin in supercapacitors and lithium-/sodium-ion batteries. Furthermore, we have systematically examined the challenges and opportunities that lignin encounters in the field of energy storage, thereby providing valuable insights for further advancements in lignin-based electrochemical energy storage materials.
doi_str_mv 10.1021/acsaem.4c01294
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_4c01294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b873878302</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-fa0f403aef12225bc507a4b9c4df8dd4a5f410f721f6ae5352f885b06bce6c4d3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqvnnMWtk6yybY5Sm2tUFH8OHlYZrOT7ZZ2I8lW6H9vpD148TTDm98beI-xawFjAVLcoo1Iu7GyIKRRZ2wg9URlYAp5_me_ZKMYNwAgjCikMQP2-UqRMNg1fwm-CRQj946v2qZru-yeQvtNNV_sO9u3vsMtf8I-ibiN3PnA51uyffB2TbvWpuu8o9Ac-FvvAzZ0xS5cIml0mkP2sZi_z5bZ6vnhcXa3ylBo02cOwSnIkZyQUurKapigqoxVtZvWtULtlAA3kcIVSDrX0k2nuoKislQkKB-y8fGvDT7GQK78Cu0Ow6EUUP62Ux7bKU_tJMPN0ZD0cuP3ISWL_8E_xfxoxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Research Progress of Lignin-Derived Functional Materials for Electrochemical Energy Storage</title><source>ACS Publications</source><creator>Luo, Qitian ; Zeng, Taiping ; Gu, Kai ; Lin, Qiao ; Yang, Weiqing</creator><creatorcontrib>Luo, Qitian ; Zeng, Taiping ; Gu, Kai ; Lin, Qiao ; Yang, Weiqing</creatorcontrib><description>Lignin, a natural polymer material, has demonstrated significant potential for advancement in the field of electrochemical energy storage. The utilization of lignin-derived functional materials has greatly improved the performance and durability of devices for electrochemical energy storage while simultaneously mitigating environmental pollution. The present thesis investigates the application of lignin-derived electrochemical functional materials, including electrode materials, electrolytes, conductive agents, and binders. When employed as electrodes, lignin-derived carbon materials exhibit remarkable modifiability (doping, cross-linking, and composite). Importantly, the presence of heteroatoms and active sites for cross-linking plays a crucial role in regulating the disorder within the carbon layer and controlling pore parameters. Lignin-based polymer materials, when employed in non-electrochemically active storage functional components such as electrolytes, separators, and binders, demonstrate exceptional mechanical strength, superior adhesion properties, and enhanced ionic conductivity due to their distinctive phenylpropane structure and functional groups (hydroxyl, carboxyl, and carbonyl). Additionally, we conducted a comprehensive analysis of the current market prospects for lignin in supercapacitors and lithium-/sodium-ion batteries. Furthermore, we have systematically examined the challenges and opportunities that lignin encounters in the field of energy storage, thereby providing valuable insights for further advancements in lignin-based electrochemical energy storage materials.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c01294</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-12, Vol.7 (24), p.11610-11632</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a159t-fa0f403aef12225bc507a4b9c4df8dd4a5f410f721f6ae5352f885b06bce6c4d3</cites><orcidid>0000-0001-8828-9862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.4c01294$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.4c01294$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Luo, Qitian</creatorcontrib><creatorcontrib>Zeng, Taiping</creatorcontrib><creatorcontrib>Gu, Kai</creatorcontrib><creatorcontrib>Lin, Qiao</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><title>Research Progress of Lignin-Derived Functional Materials for Electrochemical Energy Storage</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Lignin, a natural polymer material, has demonstrated significant potential for advancement in the field of electrochemical energy storage. The utilization of lignin-derived functional materials has greatly improved the performance and durability of devices for electrochemical energy storage while simultaneously mitigating environmental pollution. The present thesis investigates the application of lignin-derived electrochemical functional materials, including electrode materials, electrolytes, conductive agents, and binders. When employed as electrodes, lignin-derived carbon materials exhibit remarkable modifiability (doping, cross-linking, and composite). Importantly, the presence of heteroatoms and active sites for cross-linking plays a crucial role in regulating the disorder within the carbon layer and controlling pore parameters. Lignin-based polymer materials, when employed in non-electrochemically active storage functional components such as electrolytes, separators, and binders, demonstrate exceptional mechanical strength, superior adhesion properties, and enhanced ionic conductivity due to their distinctive phenylpropane structure and functional groups (hydroxyl, carboxyl, and carbonyl). Additionally, we conducted a comprehensive analysis of the current market prospects for lignin in supercapacitors and lithium-/sodium-ion batteries. Furthermore, we have systematically examined the challenges and opportunities that lignin encounters in the field of energy storage, thereby providing valuable insights for further advancements in lignin-based electrochemical energy storage materials.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWGqvnnMWtk6yybY5Sm2tUFH8OHlYZrOT7ZZ2I8lW6H9vpD148TTDm98beI-xawFjAVLcoo1Iu7GyIKRRZ2wg9URlYAp5_me_ZKMYNwAgjCikMQP2-UqRMNg1fwm-CRQj946v2qZru-yeQvtNNV_sO9u3vsMtf8I-ibiN3PnA51uyffB2TbvWpuu8o9Ac-FvvAzZ0xS5cIml0mkP2sZi_z5bZ6vnhcXa3ylBo02cOwSnIkZyQUurKapigqoxVtZvWtULtlAA3kcIVSDrX0k2nuoKislQkKB-y8fGvDT7GQK78Cu0Ow6EUUP62Ux7bKU_tJMPN0ZD0cuP3ISWL_8E_xfxoxw</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Luo, Qitian</creator><creator>Zeng, Taiping</creator><creator>Gu, Kai</creator><creator>Lin, Qiao</creator><creator>Yang, Weiqing</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8828-9862</orcidid></search><sort><creationdate>20241223</creationdate><title>Research Progress of Lignin-Derived Functional Materials for Electrochemical Energy Storage</title><author>Luo, Qitian ; Zeng, Taiping ; Gu, Kai ; Lin, Qiao ; Yang, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-fa0f403aef12225bc507a4b9c4df8dd4a5f410f721f6ae5352f885b06bce6c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qitian</creatorcontrib><creatorcontrib>Zeng, Taiping</creatorcontrib><creatorcontrib>Gu, Kai</creatorcontrib><creatorcontrib>Lin, Qiao</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qitian</au><au>Zeng, Taiping</au><au>Gu, Kai</au><au>Lin, Qiao</au><au>Yang, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research Progress of Lignin-Derived Functional Materials for Electrochemical Energy Storage</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>7</volume><issue>24</issue><spage>11610</spage><epage>11632</epage><pages>11610-11632</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Lignin, a natural polymer material, has demonstrated significant potential for advancement in the field of electrochemical energy storage. The utilization of lignin-derived functional materials has greatly improved the performance and durability of devices for electrochemical energy storage while simultaneously mitigating environmental pollution. The present thesis investigates the application of lignin-derived electrochemical functional materials, including electrode materials, electrolytes, conductive agents, and binders. When employed as electrodes, lignin-derived carbon materials exhibit remarkable modifiability (doping, cross-linking, and composite). Importantly, the presence of heteroatoms and active sites for cross-linking plays a crucial role in regulating the disorder within the carbon layer and controlling pore parameters. Lignin-based polymer materials, when employed in non-electrochemically active storage functional components such as electrolytes, separators, and binders, demonstrate exceptional mechanical strength, superior adhesion properties, and enhanced ionic conductivity due to their distinctive phenylpropane structure and functional groups (hydroxyl, carboxyl, and carbonyl). Additionally, we conducted a comprehensive analysis of the current market prospects for lignin in supercapacitors and lithium-/sodium-ion batteries. Furthermore, we have systematically examined the challenges and opportunities that lignin encounters in the field of energy storage, thereby providing valuable insights for further advancements in lignin-based electrochemical energy storage materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c01294</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8828-9862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-12, Vol.7 (24), p.11610-11632
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_4c01294
source ACS Publications
title Research Progress of Lignin-Derived Functional Materials for Electrochemical Energy Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20Progress%20of%20Lignin-Derived%20Functional%20Materials%20for%20Electrochemical%20Energy%20Storage&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Luo,%20Qitian&rft.date=2024-12-23&rft.volume=7&rft.issue=24&rft.spage=11610&rft.epage=11632&rft.pages=11610-11632&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c01294&rft_dat=%3Cacs_cross%3Eb873878302%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true