Rigid-Flexible Coupling Modification Strategy Realized by Combining MXene with C‑Coated Microsilicon for Long-Life Li-Ion Battery

Compared with nanosilicon, microsilicon with high capacity is the best candidate for high-energy-density lithium-ion batteries due to its lower cost and fewer interfacial side reactions. However, particle cracking and even pulverization caused by the huge volume expansion and low ionic conductivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-02, Vol.7 (3), p.1182-1191
Hauptverfasser: Lin, Jing, Liu, Liekai, Peng, Yuntong, Wu, Changquan, Yang, Xuerui, Zhou, Naigen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue 3
container_start_page 1182
container_title ACS applied energy materials
container_volume 7
creator Lin, Jing
Liu, Liekai
Peng, Yuntong
Wu, Changquan
Yang, Xuerui
Zhou, Naigen
description Compared with nanosilicon, microsilicon with high capacity is the best candidate for high-energy-density lithium-ion batteries due to its lower cost and fewer interfacial side reactions. However, particle cracking and even pulverization caused by the huge volume expansion and low ionic conductivity of microsilicon seriously hinder its large-scale application. Here, we prepared a rigid-flexible coupled modification layer for microsilicon flakes (Si) by using polydopamine (PDA) as a bridging agent and MXene (Ti3C2T x ) as a buffer layer. The hydrogen bonds between groups on PDA and the terminal groups (−OH, etc.) on Si and MXene surfaces can induce the uniform distribution of Si particles on the surface of the MXene, which inhibits the agglomeration of Si particles and the self-accumulation of MXene nanosheets. In addition, the rigid N-doped carbon (NC) layer derived from the high-temperature cracking of PDA coated on the Si surface and the flexible MXene buffer layer synergistically form a hierarchical multiplex conductive network, which not only accelerates the kinetics of the electrode during cycling and suppresses particle cracking but also effectively protects the electrode from the destruction of the decomposition byproducts. As a result, this NC-coated Si uniformly supported on MXene (Si@NC/MXene-2) delivers highly reversible specific capacities of 1066.1 mAh g–1 after 250 cycles at 0.5 A g–1 and 810.9 mAh g–1 after 650 cycles even at a higher current density of 1 A g–1. This work provides valuable insights for the development of advanced silicon-based anode materials for application in high-energy-density lithium-ion batteries.
doi_str_mv 10.1021/acsaem.3c02720
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_3c02720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f12738945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-e6c573aba0ebea1694c9a101d4afa2244fe5db909aaf511503e289770f034e063</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsNRuXc9aSL0z-XOWGqwWUoSq4C7cJHfilDRTJikaV4JP4Cv6JEbbhRtX93L4zuFwGDsVMBUgxTkWLdJ66hcgYwkHbCTDOPBARfLwz3_MJm27AgChRCSVGrGPpalM6c1qejV5TTyx201tmoovbGm0KbAztuH3ncOOqp4vCWvzRiXP-wFd56b5ZZ-oIf5iumeefL1_JnaAS74whbOtqU0xJGjreGqbykuNJp4abz6IV9h15PoTdqSxbmmyv2P2OLt-SG699O5mnlymHso46DyKijD2MUegnFBEKigUChBlgBqlDAJNYZkrUIg6FCIEn-SFimPQ4AcEkT9m013uT6_Wkc42zqzR9ZmA7GfFbLditl9xMJztDIOerezWNUO9_-Bvh5Z2vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rigid-Flexible Coupling Modification Strategy Realized by Combining MXene with C‑Coated Microsilicon for Long-Life Li-Ion Battery</title><source>American Chemical Society Journals</source><creator>Lin, Jing ; Liu, Liekai ; Peng, Yuntong ; Wu, Changquan ; Yang, Xuerui ; Zhou, Naigen</creator><creatorcontrib>Lin, Jing ; Liu, Liekai ; Peng, Yuntong ; Wu, Changquan ; Yang, Xuerui ; Zhou, Naigen</creatorcontrib><description>Compared with nanosilicon, microsilicon with high capacity is the best candidate for high-energy-density lithium-ion batteries due to its lower cost and fewer interfacial side reactions. However, particle cracking and even pulverization caused by the huge volume expansion and low ionic conductivity of microsilicon seriously hinder its large-scale application. Here, we prepared a rigid-flexible coupled modification layer for microsilicon flakes (Si) by using polydopamine (PDA) as a bridging agent and MXene (Ti3C2T x ) as a buffer layer. The hydrogen bonds between groups on PDA and the terminal groups (−OH, etc.) on Si and MXene surfaces can induce the uniform distribution of Si particles on the surface of the MXene, which inhibits the agglomeration of Si particles and the self-accumulation of MXene nanosheets. In addition, the rigid N-doped carbon (NC) layer derived from the high-temperature cracking of PDA coated on the Si surface and the flexible MXene buffer layer synergistically form a hierarchical multiplex conductive network, which not only accelerates the kinetics of the electrode during cycling and suppresses particle cracking but also effectively protects the electrode from the destruction of the decomposition byproducts. As a result, this NC-coated Si uniformly supported on MXene (Si@NC/MXene-2) delivers highly reversible specific capacities of 1066.1 mAh g–1 after 250 cycles at 0.5 A g–1 and 810.9 mAh g–1 after 650 cycles even at a higher current density of 1 A g–1. This work provides valuable insights for the development of advanced silicon-based anode materials for application in high-energy-density lithium-ion batteries.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.3c02720</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-02, Vol.7 (3), p.1182-1191</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-e6c573aba0ebea1694c9a101d4afa2244fe5db909aaf511503e289770f034e063</citedby><cites>FETCH-LOGICAL-a274t-e6c573aba0ebea1694c9a101d4afa2244fe5db909aaf511503e289770f034e063</cites><orcidid>0000-0003-4168-2637 ; 0000-0003-3289-0004 ; 0000-0003-0748-5947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.3c02720$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.3c02720$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Lin, Jing</creatorcontrib><creatorcontrib>Liu, Liekai</creatorcontrib><creatorcontrib>Peng, Yuntong</creatorcontrib><creatorcontrib>Wu, Changquan</creatorcontrib><creatorcontrib>Yang, Xuerui</creatorcontrib><creatorcontrib>Zhou, Naigen</creatorcontrib><title>Rigid-Flexible Coupling Modification Strategy Realized by Combining MXene with C‑Coated Microsilicon for Long-Life Li-Ion Battery</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Compared with nanosilicon, microsilicon with high capacity is the best candidate for high-energy-density lithium-ion batteries due to its lower cost and fewer interfacial side reactions. However, particle cracking and even pulverization caused by the huge volume expansion and low ionic conductivity of microsilicon seriously hinder its large-scale application. Here, we prepared a rigid-flexible coupled modification layer for microsilicon flakes (Si) by using polydopamine (PDA) as a bridging agent and MXene (Ti3C2T x ) as a buffer layer. The hydrogen bonds between groups on PDA and the terminal groups (−OH, etc.) on Si and MXene surfaces can induce the uniform distribution of Si particles on the surface of the MXene, which inhibits the agglomeration of Si particles and the self-accumulation of MXene nanosheets. In addition, the rigid N-doped carbon (NC) layer derived from the high-temperature cracking of PDA coated on the Si surface and the flexible MXene buffer layer synergistically form a hierarchical multiplex conductive network, which not only accelerates the kinetics of the electrode during cycling and suppresses particle cracking but also effectively protects the electrode from the destruction of the decomposition byproducts. As a result, this NC-coated Si uniformly supported on MXene (Si@NC/MXene-2) delivers highly reversible specific capacities of 1066.1 mAh g–1 after 250 cycles at 0.5 A g–1 and 810.9 mAh g–1 after 650 cycles even at a higher current density of 1 A g–1. This work provides valuable insights for the development of advanced silicon-based anode materials for application in high-energy-density lithium-ion batteries.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsNRuXc9aSL0z-XOWGqwWUoSq4C7cJHfilDRTJikaV4JP4Cv6JEbbhRtX93L4zuFwGDsVMBUgxTkWLdJ66hcgYwkHbCTDOPBARfLwz3_MJm27AgChRCSVGrGPpalM6c1qejV5TTyx201tmoovbGm0KbAztuH3ncOOqp4vCWvzRiXP-wFd56b5ZZ-oIf5iumeefL1_JnaAS74whbOtqU0xJGjreGqbykuNJp4abz6IV9h15PoTdqSxbmmyv2P2OLt-SG699O5mnlymHso46DyKijD2MUegnFBEKigUChBlgBqlDAJNYZkrUIg6FCIEn-SFimPQ4AcEkT9m013uT6_Wkc42zqzR9ZmA7GfFbLditl9xMJztDIOerezWNUO9_-Bvh5Z2vw</recordid><startdate>20240212</startdate><enddate>20240212</enddate><creator>Lin, Jing</creator><creator>Liu, Liekai</creator><creator>Peng, Yuntong</creator><creator>Wu, Changquan</creator><creator>Yang, Xuerui</creator><creator>Zhou, Naigen</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4168-2637</orcidid><orcidid>https://orcid.org/0000-0003-3289-0004</orcidid><orcidid>https://orcid.org/0000-0003-0748-5947</orcidid></search><sort><creationdate>20240212</creationdate><title>Rigid-Flexible Coupling Modification Strategy Realized by Combining MXene with C‑Coated Microsilicon for Long-Life Li-Ion Battery</title><author>Lin, Jing ; Liu, Liekai ; Peng, Yuntong ; Wu, Changquan ; Yang, Xuerui ; Zhou, Naigen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-e6c573aba0ebea1694c9a101d4afa2244fe5db909aaf511503e289770f034e063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jing</creatorcontrib><creatorcontrib>Liu, Liekai</creatorcontrib><creatorcontrib>Peng, Yuntong</creatorcontrib><creatorcontrib>Wu, Changquan</creatorcontrib><creatorcontrib>Yang, Xuerui</creatorcontrib><creatorcontrib>Zhou, Naigen</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jing</au><au>Liu, Liekai</au><au>Peng, Yuntong</au><au>Wu, Changquan</au><au>Yang, Xuerui</au><au>Zhou, Naigen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigid-Flexible Coupling Modification Strategy Realized by Combining MXene with C‑Coated Microsilicon for Long-Life Li-Ion Battery</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-02-12</date><risdate>2024</risdate><volume>7</volume><issue>3</issue><spage>1182</spage><epage>1191</epage><pages>1182-1191</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Compared with nanosilicon, microsilicon with high capacity is the best candidate for high-energy-density lithium-ion batteries due to its lower cost and fewer interfacial side reactions. However, particle cracking and even pulverization caused by the huge volume expansion and low ionic conductivity of microsilicon seriously hinder its large-scale application. Here, we prepared a rigid-flexible coupled modification layer for microsilicon flakes (Si) by using polydopamine (PDA) as a bridging agent and MXene (Ti3C2T x ) as a buffer layer. The hydrogen bonds between groups on PDA and the terminal groups (−OH, etc.) on Si and MXene surfaces can induce the uniform distribution of Si particles on the surface of the MXene, which inhibits the agglomeration of Si particles and the self-accumulation of MXene nanosheets. In addition, the rigid N-doped carbon (NC) layer derived from the high-temperature cracking of PDA coated on the Si surface and the flexible MXene buffer layer synergistically form a hierarchical multiplex conductive network, which not only accelerates the kinetics of the electrode during cycling and suppresses particle cracking but also effectively protects the electrode from the destruction of the decomposition byproducts. As a result, this NC-coated Si uniformly supported on MXene (Si@NC/MXene-2) delivers highly reversible specific capacities of 1066.1 mAh g–1 after 250 cycles at 0.5 A g–1 and 810.9 mAh g–1 after 650 cycles even at a higher current density of 1 A g–1. This work provides valuable insights for the development of advanced silicon-based anode materials for application in high-energy-density lithium-ion batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.3c02720</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4168-2637</orcidid><orcidid>https://orcid.org/0000-0003-3289-0004</orcidid><orcidid>https://orcid.org/0000-0003-0748-5947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-02, Vol.7 (3), p.1182-1191
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_3c02720
source American Chemical Society Journals
title Rigid-Flexible Coupling Modification Strategy Realized by Combining MXene with C‑Coated Microsilicon for Long-Life Li-Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigid-Flexible%20Coupling%20Modification%20Strategy%20Realized%20by%20Combining%20MXene%20with%20C%E2%80%91Coated%20Microsilicon%20for%20Long-Life%20Li-Ion%20Battery&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Lin,%20Jing&rft.date=2024-02-12&rft.volume=7&rft.issue=3&rft.spage=1182&rft.epage=1191&rft.pages=1182-1191&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.3c02720&rft_dat=%3Cacs_cross%3Ef12738945%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true