Co, Ni-Free Ultrathick Free-Standing Dry Electrodes for Sustainable Lithium-Ion Batteries

The conventional method of manufacturing lithium-ion battery electrodes employs a complex slurry casting process with solvents that are not environmentally friendly and process parameters that are often difficult to control. This study explores a solvent-free dry electrode fabrication process of Co-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2023-12, Vol.6 (24), p.12166-12171
Hauptverfasser: Sadan, Milan K., Lian, Guo J., Smith, Rachel M., Cumming, Denis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12171
container_issue 24
container_start_page 12166
container_title ACS applied energy materials
container_volume 6
creator Sadan, Milan K.
Lian, Guo J.
Smith, Rachel M.
Cumming, Denis
description The conventional method of manufacturing lithium-ion battery electrodes employs a complex slurry casting process with solvents that are not environmentally friendly and process parameters that are often difficult to control. This study explores a solvent-free dry electrode fabrication process of Co- and Ni-free LiMn2O4 (LMO) cathodes using a fibrillated polymer, polytetrafluoroethylene (PTFE). A thick, dry electrode (265–368 μm, 30–64 mg cm–2) of LMO cathode was prepared successfully for the first time. Altering the conductive additives in the LMO dry electrode revealed multiwalled carbon nanotubes (CNTs) as the best conducting agent for dry electrode formulation in terms of conductivity and rate performance. Additionally, an all-dry electrode full cell consisting of both a dry electrode cathode (LMO) and an anode (LTO) delivered a stable cycling performance with a capacity retention of 82.8% after 200 cycles, demonstrating the scope for all-dry electrode full cells for future applications.
doi_str_mv 10.1021/acsaem.3c02448
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_3c02448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h10532233</sourcerecordid><originalsourceid>FETCH-LOGICAL-a269t-bf6865c45c696ec65d8b3c2678c5885245d5c1d6e983f0eca808e84935ba90653</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EElXpyuwZ4WI7tmuPUFqoFMFQOjBFjnMBlzRBtjP03zdVO7Aw3d2ne6fTQ-iW0SmjnD1YFy3sppmjXAh9gUZczgShRvHLP_01msS4pZQywxQ3ZoQ-5909fvNkGQDwpknBpm_vfvBxJutk28q3X_g57PGiAZdCV0HEdRfwuo_J-taWDeDcD1C_I6uuxU82JQge4g26qm0TYXKuY7RZLj7mryR_f1nNH3NiuTKJlLXSSjohnTIKnJKVLjPH1Uw7qbXkQlbSsUqB0VlNwVlNNWhhMllaQ5XMxmh6uutCF2OAuvgNfmfDvmC0OLopTm6Ks5sBuDsBQ15suz60w3v_LR8ALrZl5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Co, Ni-Free Ultrathick Free-Standing Dry Electrodes for Sustainable Lithium-Ion Batteries</title><source>ACS Publications</source><creator>Sadan, Milan K. ; Lian, Guo J. ; Smith, Rachel M. ; Cumming, Denis</creator><creatorcontrib>Sadan, Milan K. ; Lian, Guo J. ; Smith, Rachel M. ; Cumming, Denis</creatorcontrib><description>The conventional method of manufacturing lithium-ion battery electrodes employs a complex slurry casting process with solvents that are not environmentally friendly and process parameters that are often difficult to control. This study explores a solvent-free dry electrode fabrication process of Co- and Ni-free LiMn2O4 (LMO) cathodes using a fibrillated polymer, polytetrafluoroethylene (PTFE). A thick, dry electrode (265–368 μm, 30–64 mg cm–2) of LMO cathode was prepared successfully for the first time. Altering the conductive additives in the LMO dry electrode revealed multiwalled carbon nanotubes (CNTs) as the best conducting agent for dry electrode formulation in terms of conductivity and rate performance. Additionally, an all-dry electrode full cell consisting of both a dry electrode cathode (LMO) and an anode (LTO) delivered a stable cycling performance with a capacity retention of 82.8% after 200 cycles, demonstrating the scope for all-dry electrode full cells for future applications.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.3c02448</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2023-12, Vol.6 (24), p.12166-12171</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a269t-bf6865c45c696ec65d8b3c2678c5885245d5c1d6e983f0eca808e84935ba90653</cites><orcidid>0000-0002-4704-5789 ; 0000-0003-1923-2250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.3c02448$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.3c02448$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Sadan, Milan K.</creatorcontrib><creatorcontrib>Lian, Guo J.</creatorcontrib><creatorcontrib>Smith, Rachel M.</creatorcontrib><creatorcontrib>Cumming, Denis</creatorcontrib><title>Co, Ni-Free Ultrathick Free-Standing Dry Electrodes for Sustainable Lithium-Ion Batteries</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The conventional method of manufacturing lithium-ion battery electrodes employs a complex slurry casting process with solvents that are not environmentally friendly and process parameters that are often difficult to control. This study explores a solvent-free dry electrode fabrication process of Co- and Ni-free LiMn2O4 (LMO) cathodes using a fibrillated polymer, polytetrafluoroethylene (PTFE). A thick, dry electrode (265–368 μm, 30–64 mg cm–2) of LMO cathode was prepared successfully for the first time. Altering the conductive additives in the LMO dry electrode revealed multiwalled carbon nanotubes (CNTs) as the best conducting agent for dry electrode formulation in terms of conductivity and rate performance. Additionally, an all-dry electrode full cell consisting of both a dry electrode cathode (LMO) and an anode (LTO) delivered a stable cycling performance with a capacity retention of 82.8% after 200 cycles, demonstrating the scope for all-dry electrode full cells for future applications.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EElXpyuwZ4WI7tmuPUFqoFMFQOjBFjnMBlzRBtjP03zdVO7Aw3d2ne6fTQ-iW0SmjnD1YFy3sppmjXAh9gUZczgShRvHLP_01msS4pZQywxQ3ZoQ-5909fvNkGQDwpknBpm_vfvBxJutk28q3X_g57PGiAZdCV0HEdRfwuo_J-taWDeDcD1C_I6uuxU82JQge4g26qm0TYXKuY7RZLj7mryR_f1nNH3NiuTKJlLXSSjohnTIKnJKVLjPH1Uw7qbXkQlbSsUqB0VlNwVlNNWhhMllaQ5XMxmh6uutCF2OAuvgNfmfDvmC0OLopTm6Ks5sBuDsBQ15suz60w3v_LR8ALrZl5w</recordid><startdate>20231225</startdate><enddate>20231225</enddate><creator>Sadan, Milan K.</creator><creator>Lian, Guo J.</creator><creator>Smith, Rachel M.</creator><creator>Cumming, Denis</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4704-5789</orcidid><orcidid>https://orcid.org/0000-0003-1923-2250</orcidid></search><sort><creationdate>20231225</creationdate><title>Co, Ni-Free Ultrathick Free-Standing Dry Electrodes for Sustainable Lithium-Ion Batteries</title><author>Sadan, Milan K. ; Lian, Guo J. ; Smith, Rachel M. ; Cumming, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a269t-bf6865c45c696ec65d8b3c2678c5885245d5c1d6e983f0eca808e84935ba90653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadan, Milan K.</creatorcontrib><creatorcontrib>Lian, Guo J.</creatorcontrib><creatorcontrib>Smith, Rachel M.</creatorcontrib><creatorcontrib>Cumming, Denis</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadan, Milan K.</au><au>Lian, Guo J.</au><au>Smith, Rachel M.</au><au>Cumming, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co, Ni-Free Ultrathick Free-Standing Dry Electrodes for Sustainable Lithium-Ion Batteries</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2023-12-25</date><risdate>2023</risdate><volume>6</volume><issue>24</issue><spage>12166</spage><epage>12171</epage><pages>12166-12171</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The conventional method of manufacturing lithium-ion battery electrodes employs a complex slurry casting process with solvents that are not environmentally friendly and process parameters that are often difficult to control. This study explores a solvent-free dry electrode fabrication process of Co- and Ni-free LiMn2O4 (LMO) cathodes using a fibrillated polymer, polytetrafluoroethylene (PTFE). A thick, dry electrode (265–368 μm, 30–64 mg cm–2) of LMO cathode was prepared successfully for the first time. Altering the conductive additives in the LMO dry electrode revealed multiwalled carbon nanotubes (CNTs) as the best conducting agent for dry electrode formulation in terms of conductivity and rate performance. Additionally, an all-dry electrode full cell consisting of both a dry electrode cathode (LMO) and an anode (LTO) delivered a stable cycling performance with a capacity retention of 82.8% after 200 cycles, demonstrating the scope for all-dry electrode full cells for future applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.3c02448</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4704-5789</orcidid><orcidid>https://orcid.org/0000-0003-1923-2250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2023-12, Vol.6 (24), p.12166-12171
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_3c02448
source ACS Publications
title Co, Ni-Free Ultrathick Free-Standing Dry Electrodes for Sustainable Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co,%20Ni-Free%20Ultrathick%20Free-Standing%20Dry%20Electrodes%20for%20Sustainable%20Lithium-Ion%20Batteries&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Sadan,%20Milan%20K.&rft.date=2023-12-25&rft.volume=6&rft.issue=24&rft.spage=12166&rft.epage=12171&rft.pages=12166-12171&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.3c02448&rft_dat=%3Cacs_cross%3Eh10532233%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true