Facile Solid-Phase Method for Preparing a Highly Active and Stable PtZn-Based Oxygen Reduction/Hydrogen Evolution Bifunctional Electrocatalyst: Effect of Bi-Facet Lattice Strain on Catalytic Activity
The uniform disordered PtZn alloy (d-PtZn) in situ produced on N-doped carbon (NC) nanosheets is first prepared by pyrolyzing bimetallic Pt/Zn polyphthalocyanine containing unique Pt/Zn-N4 units. Experiments and density functional theory (DFT) calculations demonstrate that d-PtZn/NC exhibits superio...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2022-11, Vol.5 (11), p.13791-13801 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13801 |
---|---|
container_issue | 11 |
container_start_page | 13791 |
container_title | ACS applied energy materials |
container_volume | 5 |
creator | Yan, Wei Cao, Shoufu Liu, Heyuan Xing, Qianli Ren, Jianwei Li, Zhi Li, Xiyou Lu, Xiaoqing Chen, Yanli |
description | The uniform disordered PtZn alloy (d-PtZn) in situ produced on N-doped carbon (NC) nanosheets is first prepared by pyrolyzing bimetallic Pt/Zn polyphthalocyanine containing unique Pt/Zn-N4 units. Experiments and density functional theory (DFT) calculations demonstrate that d-PtZn/NC exhibits superior activity and stability for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The maximum peak power density of d-PtZn/NC in H2/O2 fuel cells is up to 1300 mW cm–2, and the decay for half-wave potential (0.88 V) after 10k cycles is less than 5 mV. For HER, the overpotential at 10 mA cm–2 of d-PtZn/NC (29 mV) is obviously smaller than that of commercial Pt/C (50 mV), and the current density of d-PtZn/NC maintains a steady 94% retention after 10 h of continuous electrolysis. The excellent activity of d-PtZn/NC is mainly attributed to bi-facet lattice strain, in which the degree of compressive strain on the (111) plane and the tensile strain on the (200) plane of d-PtZn is exactly located at the middle positions between bulk Pt and PtZn intermetallics. This subtly changes the d-band center of PtZn and thus allows the adsorption energy for the intermediates to reach the optimal position. |
doi_str_mv | 10.1021/acsaem.2c02434 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_2c02434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b026812497</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-da77825ccf54225fe9d85b3d857253a19cd6c0534e16621eb0002abdd3b7c8663</originalsourceid><addsrcrecordid>eNp1kUtPAjEUhSdGE4mydX3XJoNt58W4A4JigoH42LiZ3OkDSoapaQtxfqF_ywIu3Lhpm6_n3Jz2RNENJQNKGL1D7lBuB4wTlibpWdRjWZHGpMzZ-Z_zZdR3bkMIoSXNWVn2ou8H5LqR8GoaLeLlGp2EZ-nXRoAyFpZWfqLV7QoQZnq1bjoYca_3ErAV8OqxDt6l_2jjcXAKWHx1K9nCixS7IDPt3awT1hzQdG-a3QHBWKtde7zFBqaN5N4ajh6bzvl7mCoVCBgVdHEIJz3M0XvNQ0ZvUbcQRkyO8gBPabTvrqMLhY2T_d_9Knp_mL5NZvF88fg0Gc1jZEXqY4FFMWQZ5ypLGcuULMUwq5OwFCxLkJZc5JxkSSppnjMq6_BXDGshkrrgwzxPrqLBaS63xjkrVfVp9RZtV1FSHZqoTk1Uv00Ew-3JEHi1MTsbXu3-E_8AJKGOjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facile Solid-Phase Method for Preparing a Highly Active and Stable PtZn-Based Oxygen Reduction/Hydrogen Evolution Bifunctional Electrocatalyst: Effect of Bi-Facet Lattice Strain on Catalytic Activity</title><source>ACS Publications</source><creator>Yan, Wei ; Cao, Shoufu ; Liu, Heyuan ; Xing, Qianli ; Ren, Jianwei ; Li, Zhi ; Li, Xiyou ; Lu, Xiaoqing ; Chen, Yanli</creator><creatorcontrib>Yan, Wei ; Cao, Shoufu ; Liu, Heyuan ; Xing, Qianli ; Ren, Jianwei ; Li, Zhi ; Li, Xiyou ; Lu, Xiaoqing ; Chen, Yanli</creatorcontrib><description>The uniform disordered PtZn alloy (d-PtZn) in situ produced on N-doped carbon (NC) nanosheets is first prepared by pyrolyzing bimetallic Pt/Zn polyphthalocyanine containing unique Pt/Zn-N4 units. Experiments and density functional theory (DFT) calculations demonstrate that d-PtZn/NC exhibits superior activity and stability for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The maximum peak power density of d-PtZn/NC in H2/O2 fuel cells is up to 1300 mW cm–2, and the decay for half-wave potential (0.88 V) after 10k cycles is less than 5 mV. For HER, the overpotential at 10 mA cm–2 of d-PtZn/NC (29 mV) is obviously smaller than that of commercial Pt/C (50 mV), and the current density of d-PtZn/NC maintains a steady 94% retention after 10 h of continuous electrolysis. The excellent activity of d-PtZn/NC is mainly attributed to bi-facet lattice strain, in which the degree of compressive strain on the (111) plane and the tensile strain on the (200) plane of d-PtZn is exactly located at the middle positions between bulk Pt and PtZn intermetallics. This subtly changes the d-band center of PtZn and thus allows the adsorption energy for the intermediates to reach the optimal position.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c02434</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-11, Vol.5 (11), p.13791-13801</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-da77825ccf54225fe9d85b3d857253a19cd6c0534e16621eb0002abdd3b7c8663</citedby><cites>FETCH-LOGICAL-a274t-da77825ccf54225fe9d85b3d857253a19cd6c0534e16621eb0002abdd3b7c8663</cites><orcidid>0000-0003-2548-2053 ; 0000-0002-7553-7131 ; 0000-0003-3252-7889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c02434$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c02434$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Cao, Shoufu</creatorcontrib><creatorcontrib>Liu, Heyuan</creatorcontrib><creatorcontrib>Xing, Qianli</creatorcontrib><creatorcontrib>Ren, Jianwei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Li, Xiyou</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Chen, Yanli</creatorcontrib><title>Facile Solid-Phase Method for Preparing a Highly Active and Stable PtZn-Based Oxygen Reduction/Hydrogen Evolution Bifunctional Electrocatalyst: Effect of Bi-Facet Lattice Strain on Catalytic Activity</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The uniform disordered PtZn alloy (d-PtZn) in situ produced on N-doped carbon (NC) nanosheets is first prepared by pyrolyzing bimetallic Pt/Zn polyphthalocyanine containing unique Pt/Zn-N4 units. Experiments and density functional theory (DFT) calculations demonstrate that d-PtZn/NC exhibits superior activity and stability for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The maximum peak power density of d-PtZn/NC in H2/O2 fuel cells is up to 1300 mW cm–2, and the decay for half-wave potential (0.88 V) after 10k cycles is less than 5 mV. For HER, the overpotential at 10 mA cm–2 of d-PtZn/NC (29 mV) is obviously smaller than that of commercial Pt/C (50 mV), and the current density of d-PtZn/NC maintains a steady 94% retention after 10 h of continuous electrolysis. The excellent activity of d-PtZn/NC is mainly attributed to bi-facet lattice strain, in which the degree of compressive strain on the (111) plane and the tensile strain on the (200) plane of d-PtZn is exactly located at the middle positions between bulk Pt and PtZn intermetallics. This subtly changes the d-band center of PtZn and thus allows the adsorption energy for the intermediates to reach the optimal position.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUtPAjEUhSdGE4mydX3XJoNt58W4A4JigoH42LiZ3OkDSoapaQtxfqF_ywIu3Lhpm6_n3Jz2RNENJQNKGL1D7lBuB4wTlibpWdRjWZHGpMzZ-Z_zZdR3bkMIoSXNWVn2ou8H5LqR8GoaLeLlGp2EZ-nXRoAyFpZWfqLV7QoQZnq1bjoYca_3ErAV8OqxDt6l_2jjcXAKWHx1K9nCixS7IDPt3awT1hzQdG-a3QHBWKtde7zFBqaN5N4ajh6bzvl7mCoVCBgVdHEIJz3M0XvNQ0ZvUbcQRkyO8gBPabTvrqMLhY2T_d_9Knp_mL5NZvF88fg0Gc1jZEXqY4FFMWQZ5ypLGcuULMUwq5OwFCxLkJZc5JxkSSppnjMq6_BXDGshkrrgwzxPrqLBaS63xjkrVfVp9RZtV1FSHZqoTk1Uv00Ew-3JEHi1MTsbXu3-E_8AJKGOjw</recordid><startdate>20221128</startdate><enddate>20221128</enddate><creator>Yan, Wei</creator><creator>Cao, Shoufu</creator><creator>Liu, Heyuan</creator><creator>Xing, Qianli</creator><creator>Ren, Jianwei</creator><creator>Li, Zhi</creator><creator>Li, Xiyou</creator><creator>Lu, Xiaoqing</creator><creator>Chen, Yanli</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2548-2053</orcidid><orcidid>https://orcid.org/0000-0002-7553-7131</orcidid><orcidid>https://orcid.org/0000-0003-3252-7889</orcidid></search><sort><creationdate>20221128</creationdate><title>Facile Solid-Phase Method for Preparing a Highly Active and Stable PtZn-Based Oxygen Reduction/Hydrogen Evolution Bifunctional Electrocatalyst: Effect of Bi-Facet Lattice Strain on Catalytic Activity</title><author>Yan, Wei ; Cao, Shoufu ; Liu, Heyuan ; Xing, Qianli ; Ren, Jianwei ; Li, Zhi ; Li, Xiyou ; Lu, Xiaoqing ; Chen, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-da77825ccf54225fe9d85b3d857253a19cd6c0534e16621eb0002abdd3b7c8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Cao, Shoufu</creatorcontrib><creatorcontrib>Liu, Heyuan</creatorcontrib><creatorcontrib>Xing, Qianli</creatorcontrib><creatorcontrib>Ren, Jianwei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Li, Xiyou</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Chen, Yanli</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wei</au><au>Cao, Shoufu</au><au>Liu, Heyuan</au><au>Xing, Qianli</au><au>Ren, Jianwei</au><au>Li, Zhi</au><au>Li, Xiyou</au><au>Lu, Xiaoqing</au><au>Chen, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Solid-Phase Method for Preparing a Highly Active and Stable PtZn-Based Oxygen Reduction/Hydrogen Evolution Bifunctional Electrocatalyst: Effect of Bi-Facet Lattice Strain on Catalytic Activity</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-11-28</date><risdate>2022</risdate><volume>5</volume><issue>11</issue><spage>13791</spage><epage>13801</epage><pages>13791-13801</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The uniform disordered PtZn alloy (d-PtZn) in situ produced on N-doped carbon (NC) nanosheets is first prepared by pyrolyzing bimetallic Pt/Zn polyphthalocyanine containing unique Pt/Zn-N4 units. Experiments and density functional theory (DFT) calculations demonstrate that d-PtZn/NC exhibits superior activity and stability for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The maximum peak power density of d-PtZn/NC in H2/O2 fuel cells is up to 1300 mW cm–2, and the decay for half-wave potential (0.88 V) after 10k cycles is less than 5 mV. For HER, the overpotential at 10 mA cm–2 of d-PtZn/NC (29 mV) is obviously smaller than that of commercial Pt/C (50 mV), and the current density of d-PtZn/NC maintains a steady 94% retention after 10 h of continuous electrolysis. The excellent activity of d-PtZn/NC is mainly attributed to bi-facet lattice strain, in which the degree of compressive strain on the (111) plane and the tensile strain on the (200) plane of d-PtZn is exactly located at the middle positions between bulk Pt and PtZn intermetallics. This subtly changes the d-band center of PtZn and thus allows the adsorption energy for the intermediates to reach the optimal position.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c02434</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2548-2053</orcidid><orcidid>https://orcid.org/0000-0002-7553-7131</orcidid><orcidid>https://orcid.org/0000-0003-3252-7889</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2022-11, Vol.5 (11), p.13791-13801 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaem_2c02434 |
source | ACS Publications |
title | Facile Solid-Phase Method for Preparing a Highly Active and Stable PtZn-Based Oxygen Reduction/Hydrogen Evolution Bifunctional Electrocatalyst: Effect of Bi-Facet Lattice Strain on Catalytic Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Solid-Phase%20Method%20for%20Preparing%20a%20Highly%20Active%20and%20Stable%20PtZn-Based%20Oxygen%20Reduction/Hydrogen%20Evolution%20Bifunctional%20Electrocatalyst:%20Effect%20of%20Bi-Facet%20Lattice%20Strain%20on%20Catalytic%20Activity&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Yan,%20Wei&rft.date=2022-11-28&rft.volume=5&rft.issue=11&rft.spage=13791&rft.epage=13801&rft.pages=13791-13801&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c02434&rft_dat=%3Cacs_cross%3Eb026812497%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |