Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping

Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2022-10, Vol.5 (10), p.12583-12591
Hauptverfasser: Hong, Tae Hwa, Kee, Joon Young, Kwon, Dohyeong, Park, Sangeon, Kim, Duho, Lee, Jung Tae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12591
container_issue 10
container_start_page 12583
container_title ACS applied energy materials
container_volume 5
creator Hong, Tae Hwa
Kee, Joon Young
Kwon, Dohyeong
Park, Sangeon
Kim, Duho
Lee, Jung Tae
description Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.
doi_str_mv 10.1021/acsaem.2c02221
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_2c02221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b228036788</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EElXpyuwZKeHsOEk9QlsKaiSGlDk6Oxfqqk2iOCCx8Q68IU9CUDqwMN2v0_-dTh9j1wJCAVLcovVIx1BakFKKMzaRcaoC0Ik8_5Mv2cz7PQAILRKp9YRtlmRdu6PO1a98Ve-wtlTyvDm4Msh77IlvXE29s543Fc_c9-dXzu-x7weCPH93yLfEl0078FfsosKDp9lpTtnLw2q7eAyy5_XT4i4LUILqg3llrCJFCCiNikUEEViDSsRRPI9VGSfKGEohIYW2skYkqdLWDDU0UpdJNGXheNd2jfcdVUXbuSN2H4WA4tdGMdooTjYG4GYEhn2xb966enjvv_IPz9xh4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</title><source>ACS Publications</source><creator>Hong, Tae Hwa ; Kee, Joon Young ; Kwon, Dohyeong ; Park, Sangeon ; Kim, Duho ; Lee, Jung Tae</creator><creatorcontrib>Hong, Tae Hwa ; Kee, Joon Young ; Kwon, Dohyeong ; Park, Sangeon ; Kim, Duho ; Lee, Jung Tae</creatorcontrib><description>Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c02221</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-10, Vol.5 (10), p.12583-12591</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</citedby><cites>FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</cites><orcidid>0000-0002-7394-6361 ; 0000-0002-2228-1849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c02221$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c02221$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hong, Tae Hwa</creatorcontrib><creatorcontrib>Kee, Joon Young</creatorcontrib><creatorcontrib>Kwon, Dohyeong</creatorcontrib><creatorcontrib>Park, Sangeon</creatorcontrib><creatorcontrib>Kim, Duho</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><title>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EElXpyuwZKeHsOEk9QlsKaiSGlDk6Oxfqqk2iOCCx8Q68IU9CUDqwMN2v0_-dTh9j1wJCAVLcovVIx1BakFKKMzaRcaoC0Ik8_5Mv2cz7PQAILRKp9YRtlmRdu6PO1a98Ve-wtlTyvDm4Msh77IlvXE29s543Fc_c9-dXzu-x7weCPH93yLfEl0078FfsosKDp9lpTtnLw2q7eAyy5_XT4i4LUILqg3llrCJFCCiNikUEEViDSsRRPI9VGSfKGEohIYW2skYkqdLWDDU0UpdJNGXheNd2jfcdVUXbuSN2H4WA4tdGMdooTjYG4GYEhn2xb966enjvv_IPz9xh4Q</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Hong, Tae Hwa</creator><creator>Kee, Joon Young</creator><creator>Kwon, Dohyeong</creator><creator>Park, Sangeon</creator><creator>Kim, Duho</creator><creator>Lee, Jung Tae</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7394-6361</orcidid><orcidid>https://orcid.org/0000-0002-2228-1849</orcidid></search><sort><creationdate>20221024</creationdate><title>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</title><author>Hong, Tae Hwa ; Kee, Joon Young ; Kwon, Dohyeong ; Park, Sangeon ; Kim, Duho ; Lee, Jung Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Tae Hwa</creatorcontrib><creatorcontrib>Kee, Joon Young</creatorcontrib><creatorcontrib>Kwon, Dohyeong</creatorcontrib><creatorcontrib>Park, Sangeon</creatorcontrib><creatorcontrib>Kim, Duho</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Tae Hwa</au><au>Kee, Joon Young</au><au>Kwon, Dohyeong</au><au>Park, Sangeon</au><au>Kim, Duho</au><au>Lee, Jung Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-10-24</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>12583</spage><epage>12591</epage><pages>12583-12591</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c02221</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7394-6361</orcidid><orcidid>https://orcid.org/0000-0002-2228-1849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2022-10, Vol.5 (10), p.12583-12591
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_2c02221
source ACS Publications
title Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20Enhanced%20Solid-State%20Kinetics%20of%20Li%E2%80%93S%20Batteries%20via%20Te%20Doping&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Hong,%20Tae%20Hwa&rft.date=2022-10-24&rft.volume=5&rft.issue=10&rft.spage=12583&rft.epage=12591&rft.pages=12583-12591&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c02221&rft_dat=%3Cacs_cross%3Eb228036788%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true