Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping
Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reacti...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2022-10, Vol.5 (10), p.12583-12591 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12591 |
---|---|
container_issue | 10 |
container_start_page | 12583 |
container_title | ACS applied energy materials |
container_volume | 5 |
creator | Hong, Tae Hwa Kee, Joon Young Kwon, Dohyeong Park, Sangeon Kim, Duho Lee, Jung Tae |
description | Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion. |
doi_str_mv | 10.1021/acsaem.2c02221 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_2c02221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b228036788</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EElXpyuwZKeHsOEk9QlsKaiSGlDk6Oxfqqk2iOCCx8Q68IU9CUDqwMN2v0_-dTh9j1wJCAVLcovVIx1BakFKKMzaRcaoC0Ik8_5Mv2cz7PQAILRKp9YRtlmRdu6PO1a98Ve-wtlTyvDm4Msh77IlvXE29s543Fc_c9-dXzu-x7weCPH93yLfEl0078FfsosKDp9lpTtnLw2q7eAyy5_XT4i4LUILqg3llrCJFCCiNikUEEViDSsRRPI9VGSfKGEohIYW2skYkqdLWDDU0UpdJNGXheNd2jfcdVUXbuSN2H4WA4tdGMdooTjYG4GYEhn2xb966enjvv_IPz9xh4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</title><source>ACS Publications</source><creator>Hong, Tae Hwa ; Kee, Joon Young ; Kwon, Dohyeong ; Park, Sangeon ; Kim, Duho ; Lee, Jung Tae</creator><creatorcontrib>Hong, Tae Hwa ; Kee, Joon Young ; Kwon, Dohyeong ; Park, Sangeon ; Kim, Duho ; Lee, Jung Tae</creatorcontrib><description>Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c02221</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-10, Vol.5 (10), p.12583-12591</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</citedby><cites>FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</cites><orcidid>0000-0002-7394-6361 ; 0000-0002-2228-1849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c02221$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c02221$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hong, Tae Hwa</creatorcontrib><creatorcontrib>Kee, Joon Young</creatorcontrib><creatorcontrib>Kwon, Dohyeong</creatorcontrib><creatorcontrib>Park, Sangeon</creatorcontrib><creatorcontrib>Kim, Duho</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><title>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EElXpyuwZKeHsOEk9QlsKaiSGlDk6Oxfqqk2iOCCx8Q68IU9CUDqwMN2v0_-dTh9j1wJCAVLcovVIx1BakFKKMzaRcaoC0Ik8_5Mv2cz7PQAILRKp9YRtlmRdu6PO1a98Ve-wtlTyvDm4Msh77IlvXE29s543Fc_c9-dXzu-x7weCPH93yLfEl0078FfsosKDp9lpTtnLw2q7eAyy5_XT4i4LUILqg3llrCJFCCiNikUEEViDSsRRPI9VGSfKGEohIYW2skYkqdLWDDU0UpdJNGXheNd2jfcdVUXbuSN2H4WA4tdGMdooTjYG4GYEhn2xb966enjvv_IPz9xh4Q</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Hong, Tae Hwa</creator><creator>Kee, Joon Young</creator><creator>Kwon, Dohyeong</creator><creator>Park, Sangeon</creator><creator>Kim, Duho</creator><creator>Lee, Jung Tae</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7394-6361</orcidid><orcidid>https://orcid.org/0000-0002-2228-1849</orcidid></search><sort><creationdate>20221024</creationdate><title>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</title><author>Hong, Tae Hwa ; Kee, Joon Young ; Kwon, Dohyeong ; Park, Sangeon ; Kim, Duho ; Lee, Jung Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-8fbc4e4ea0a2b4513030cba41535854d564bbe706e4acfcb16749cb303ab29d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Tae Hwa</creatorcontrib><creatorcontrib>Kee, Joon Young</creatorcontrib><creatorcontrib>Kwon, Dohyeong</creatorcontrib><creatorcontrib>Park, Sangeon</creatorcontrib><creatorcontrib>Kim, Duho</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Tae Hwa</au><au>Kee, Joon Young</au><au>Kwon, Dohyeong</au><au>Park, Sangeon</au><au>Kim, Duho</au><au>Lee, Jung Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-10-24</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>12583</spage><epage>12591</epage><pages>12583-12591</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2S x , where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c02221</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7394-6361</orcidid><orcidid>https://orcid.org/0000-0002-2228-1849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2022-10, Vol.5 (10), p.12583-12591 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaem_2c02221 |
source | ACS Publications |
title | Deciphering Enhanced Solid-State Kinetics of Li–S Batteries via Te Doping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20Enhanced%20Solid-State%20Kinetics%20of%20Li%E2%80%93S%20Batteries%20via%20Te%20Doping&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Hong,%20Tae%20Hwa&rft.date=2022-10-24&rft.volume=5&rft.issue=10&rft.spage=12583&rft.epage=12591&rft.pages=12583-12591&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c02221&rft_dat=%3Cacs_cross%3Eb228036788%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |