Coffee Waste-Derived Nanoporous Carbons for Hydrogen Storage

Biological waste such as residues from the food and beverage industry provides a valuable and abundant resource to be used as a precursor for the synthesis of activated carbons that can be subsequently employed as adsorbents for, e.g., hydrogen storage. Materials with a large specific surface area a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2022-09, Vol.5 (9), p.10915-10926
Hauptverfasser: Stock, Sebastian, Kostoglou, Nikolaos, Selinger, Julian, Spirk, Stefan, Tampaxis, Christos, Charalambopoulou, Georgia, Steriotis, Theodore, Rebholz, Claus, Mitterer, Christian, Paris, Oskar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10926
container_issue 9
container_start_page 10915
container_title ACS applied energy materials
container_volume 5
creator Stock, Sebastian
Kostoglou, Nikolaos
Selinger, Julian
Spirk, Stefan
Tampaxis, Christos
Charalambopoulou, Georgia
Steriotis, Theodore
Rebholz, Claus
Mitterer, Christian
Paris, Oskar
description Biological waste such as residues from the food and beverage industry provides a valuable and abundant resource to be used as a precursor for the synthesis of activated carbons that can be subsequently employed as adsorbents for, e.g., hydrogen storage. Materials with a large specific surface area and pores of appropriate size are necessary to achieve reasonable hydrogen adsorption capacity. Here, we present the repeatable synthesis of activated carbons from coffee waste, i.e., spent coffee grounds and coffee silver skins, on the basis of two independently synthesized batches. The carbonization process under nitrogen gas flow followed by chemical activation with solid potassium hydroxide results in microporous carbons with bimodal pore size distribution and specific surface area up to 3300 and 2680 m2/g based on Brunauer–Emmett–Teller and density functional theory methods, respectively. The materials exhibit excellent hydrogen adsorption performance under cryogenic conditions (77 K), reaching high and fully reversible excess gravimetric hydrogen uptake values of up to 5.79 wt % at 37 bar, and total capacities exceeding 9 wt % at 100 bar.
doi_str_mv 10.1021/acsaem.2c01573
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_2c01573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b848867445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-abcc5f081b6268a776318f3d0f31111edc7a3844d56d543ab99e879421b293ea3</originalsourceid><addsrcrecordid>eNp1j81LAzEQxYMoWGqvnnMWtuZrsxvwIutHhaIHFY9hNpmUFrspyVbof--W7cGLc3nD471hfoRcczbnTPBbcBlwOxeO8bKSZ2QiykoVzGhx_me_JLOcN4wxbrgWxkzIXRNDQKRfkHssHjCtf9DTV-jiLqa4z7SB1MYu0xATXRx8iivs6HsfE6zwilwE-M44O-mUfD49fjSLYvn2_NLcLwuQXPUFtM6VgdW81ULXUFVa8jpIz4Lkw6B3FchaKV9qXyoJrTFYV0YJ3gojEeSUzMe7LsWcEwa7S-stpIPlzB7x7YhvT_hD4WYsDL7dxH3qhvf-C_8CA_9b2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coffee Waste-Derived Nanoporous Carbons for Hydrogen Storage</title><source>ACS Publications</source><creator>Stock, Sebastian ; Kostoglou, Nikolaos ; Selinger, Julian ; Spirk, Stefan ; Tampaxis, Christos ; Charalambopoulou, Georgia ; Steriotis, Theodore ; Rebholz, Claus ; Mitterer, Christian ; Paris, Oskar</creator><creatorcontrib>Stock, Sebastian ; Kostoglou, Nikolaos ; Selinger, Julian ; Spirk, Stefan ; Tampaxis, Christos ; Charalambopoulou, Georgia ; Steriotis, Theodore ; Rebholz, Claus ; Mitterer, Christian ; Paris, Oskar</creatorcontrib><description>Biological waste such as residues from the food and beverage industry provides a valuable and abundant resource to be used as a precursor for the synthesis of activated carbons that can be subsequently employed as adsorbents for, e.g., hydrogen storage. Materials with a large specific surface area and pores of appropriate size are necessary to achieve reasonable hydrogen adsorption capacity. Here, we present the repeatable synthesis of activated carbons from coffee waste, i.e., spent coffee grounds and coffee silver skins, on the basis of two independently synthesized batches. The carbonization process under nitrogen gas flow followed by chemical activation with solid potassium hydroxide results in microporous carbons with bimodal pore size distribution and specific surface area up to 3300 and 2680 m2/g based on Brunauer–Emmett–Teller and density functional theory methods, respectively. The materials exhibit excellent hydrogen adsorption performance under cryogenic conditions (77 K), reaching high and fully reversible excess gravimetric hydrogen uptake values of up to 5.79 wt % at 37 bar, and total capacities exceeding 9 wt % at 100 bar.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c01573</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-09, Vol.5 (9), p.10915-10926</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-abcc5f081b6268a776318f3d0f31111edc7a3844d56d543ab99e879421b293ea3</citedby><cites>FETCH-LOGICAL-a314t-abcc5f081b6268a776318f3d0f31111edc7a3844d56d543ab99e879421b293ea3</cites><orcidid>0000-0002-3821-2063 ; 0000-0001-6475-2250 ; 0000-0001-7764-4478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c01573$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c01573$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Stock, Sebastian</creatorcontrib><creatorcontrib>Kostoglou, Nikolaos</creatorcontrib><creatorcontrib>Selinger, Julian</creatorcontrib><creatorcontrib>Spirk, Stefan</creatorcontrib><creatorcontrib>Tampaxis, Christos</creatorcontrib><creatorcontrib>Charalambopoulou, Georgia</creatorcontrib><creatorcontrib>Steriotis, Theodore</creatorcontrib><creatorcontrib>Rebholz, Claus</creatorcontrib><creatorcontrib>Mitterer, Christian</creatorcontrib><creatorcontrib>Paris, Oskar</creatorcontrib><title>Coffee Waste-Derived Nanoporous Carbons for Hydrogen Storage</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Biological waste such as residues from the food and beverage industry provides a valuable and abundant resource to be used as a precursor for the synthesis of activated carbons that can be subsequently employed as adsorbents for, e.g., hydrogen storage. Materials with a large specific surface area and pores of appropriate size are necessary to achieve reasonable hydrogen adsorption capacity. Here, we present the repeatable synthesis of activated carbons from coffee waste, i.e., spent coffee grounds and coffee silver skins, on the basis of two independently synthesized batches. The carbonization process under nitrogen gas flow followed by chemical activation with solid potassium hydroxide results in microporous carbons with bimodal pore size distribution and specific surface area up to 3300 and 2680 m2/g based on Brunauer–Emmett–Teller and density functional theory methods, respectively. The materials exhibit excellent hydrogen adsorption performance under cryogenic conditions (77 K), reaching high and fully reversible excess gravimetric hydrogen uptake values of up to 5.79 wt % at 37 bar, and total capacities exceeding 9 wt % at 100 bar.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1j81LAzEQxYMoWGqvnnMWtuZrsxvwIutHhaIHFY9hNpmUFrspyVbof--W7cGLc3nD471hfoRcczbnTPBbcBlwOxeO8bKSZ2QiykoVzGhx_me_JLOcN4wxbrgWxkzIXRNDQKRfkHssHjCtf9DTV-jiLqa4z7SB1MYu0xATXRx8iivs6HsfE6zwilwE-M44O-mUfD49fjSLYvn2_NLcLwuQXPUFtM6VgdW81ULXUFVa8jpIz4Lkw6B3FchaKV9qXyoJrTFYV0YJ3gojEeSUzMe7LsWcEwa7S-stpIPlzB7x7YhvT_hD4WYsDL7dxH3qhvf-C_8CA_9b2w</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Stock, Sebastian</creator><creator>Kostoglou, Nikolaos</creator><creator>Selinger, Julian</creator><creator>Spirk, Stefan</creator><creator>Tampaxis, Christos</creator><creator>Charalambopoulou, Georgia</creator><creator>Steriotis, Theodore</creator><creator>Rebholz, Claus</creator><creator>Mitterer, Christian</creator><creator>Paris, Oskar</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3821-2063</orcidid><orcidid>https://orcid.org/0000-0001-6475-2250</orcidid><orcidid>https://orcid.org/0000-0001-7764-4478</orcidid></search><sort><creationdate>20220926</creationdate><title>Coffee Waste-Derived Nanoporous Carbons for Hydrogen Storage</title><author>Stock, Sebastian ; Kostoglou, Nikolaos ; Selinger, Julian ; Spirk, Stefan ; Tampaxis, Christos ; Charalambopoulou, Georgia ; Steriotis, Theodore ; Rebholz, Claus ; Mitterer, Christian ; Paris, Oskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-abcc5f081b6268a776318f3d0f31111edc7a3844d56d543ab99e879421b293ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stock, Sebastian</creatorcontrib><creatorcontrib>Kostoglou, Nikolaos</creatorcontrib><creatorcontrib>Selinger, Julian</creatorcontrib><creatorcontrib>Spirk, Stefan</creatorcontrib><creatorcontrib>Tampaxis, Christos</creatorcontrib><creatorcontrib>Charalambopoulou, Georgia</creatorcontrib><creatorcontrib>Steriotis, Theodore</creatorcontrib><creatorcontrib>Rebholz, Claus</creatorcontrib><creatorcontrib>Mitterer, Christian</creatorcontrib><creatorcontrib>Paris, Oskar</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stock, Sebastian</au><au>Kostoglou, Nikolaos</au><au>Selinger, Julian</au><au>Spirk, Stefan</au><au>Tampaxis, Christos</au><au>Charalambopoulou, Georgia</au><au>Steriotis, Theodore</au><au>Rebholz, Claus</au><au>Mitterer, Christian</au><au>Paris, Oskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coffee Waste-Derived Nanoporous Carbons for Hydrogen Storage</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-09-26</date><risdate>2022</risdate><volume>5</volume><issue>9</issue><spage>10915</spage><epage>10926</epage><pages>10915-10926</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Biological waste such as residues from the food and beverage industry provides a valuable and abundant resource to be used as a precursor for the synthesis of activated carbons that can be subsequently employed as adsorbents for, e.g., hydrogen storage. Materials with a large specific surface area and pores of appropriate size are necessary to achieve reasonable hydrogen adsorption capacity. Here, we present the repeatable synthesis of activated carbons from coffee waste, i.e., spent coffee grounds and coffee silver skins, on the basis of two independently synthesized batches. The carbonization process under nitrogen gas flow followed by chemical activation with solid potassium hydroxide results in microporous carbons with bimodal pore size distribution and specific surface area up to 3300 and 2680 m2/g based on Brunauer–Emmett–Teller and density functional theory methods, respectively. The materials exhibit excellent hydrogen adsorption performance under cryogenic conditions (77 K), reaching high and fully reversible excess gravimetric hydrogen uptake values of up to 5.79 wt % at 37 bar, and total capacities exceeding 9 wt % at 100 bar.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c01573</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3821-2063</orcidid><orcidid>https://orcid.org/0000-0001-6475-2250</orcidid><orcidid>https://orcid.org/0000-0001-7764-4478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2022-09, Vol.5 (9), p.10915-10926
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_2c01573
source ACS Publications
title Coffee Waste-Derived Nanoporous Carbons for Hydrogen Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coffee%20Waste-Derived%20Nanoporous%20Carbons%20for%20Hydrogen%20Storage&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Stock,%20Sebastian&rft.date=2022-09-26&rft.volume=5&rft.issue=9&rft.spage=10915&rft.epage=10926&rft.pages=10915-10926&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c01573&rft_dat=%3Cacs_cross%3Eb848867445%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true