Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling
Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2022-05, Vol.5 (5), p.6462-6471 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6471 |
---|---|
container_issue | 5 |
container_start_page | 6462 |
container_title | ACS applied energy materials |
container_volume | 5 |
creator | Zhang, Guangxu Wei, Xuezhe Chen, Siqi Han, Guangshuai Zhu, Jiangong Dai, Haifeng |
description | Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization. |
doi_str_mv | 10.1021/acsaem.2c00957 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_2c00957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a923915241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</originalsourceid><addsrcrecordid>eNp1kMtLw0AQxhdRsNRePe9ZSJ3dPLZ71PpoISJIPYdhM0m2NEnZ3Sj9742kBy-e5pvH9zH8GLsVsBQgxT0aj9QupQHQqbpgM5mqJAKdycs_-potvN8DgNAik1rPmN12X-SDrTHYvuOhIf5EtcNy6t_INNhZ33reVzy3obFDG23HzSOGQM6S50NXkuN5_x3tqD2SwzA44htbN9EHBuLrkznYrr5hVxUePC3Odc4-X553602Uv79u1w95hFIlIYpVBphmMVaxUACVBoW6JJUmKVBSKUhwRSVKo7LYoCaZGlGWamWkFNqUcTxnyynXuN57R1VxdLZFdyoEFL-siolVcWY1Gu4mwzgv9v3guvG9_45_AAGXbPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</title><source>ACS Publications</source><creator>Zhang, Guangxu ; Wei, Xuezhe ; Chen, Siqi ; Han, Guangshuai ; Zhu, Jiangong ; Dai, Haifeng</creator><creatorcontrib>Zhang, Guangxu ; Wei, Xuezhe ; Chen, Siqi ; Han, Guangshuai ; Zhu, Jiangong ; Dai, Haifeng</creatorcontrib><description>Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c00957</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-05, Vol.5 (5), p.6462-6471</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</citedby><cites>FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</cites><orcidid>0000-0001-5322-2019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c00957$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c00957$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Zhang, Guangxu</creatorcontrib><creatorcontrib>Wei, Xuezhe</creatorcontrib><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Han, Guangshuai</creatorcontrib><creatorcontrib>Zhu, Jiangong</creatorcontrib><creatorcontrib>Dai, Haifeng</creatorcontrib><title>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLw0AQxhdRsNRePe9ZSJ3dPLZ71PpoISJIPYdhM0m2NEnZ3Sj9742kBy-e5pvH9zH8GLsVsBQgxT0aj9QupQHQqbpgM5mqJAKdycs_-potvN8DgNAik1rPmN12X-SDrTHYvuOhIf5EtcNy6t_INNhZ33reVzy3obFDG23HzSOGQM6S50NXkuN5_x3tqD2SwzA44htbN9EHBuLrkznYrr5hVxUePC3Odc4-X553602Uv79u1w95hFIlIYpVBphmMVaxUACVBoW6JJUmKVBSKUhwRSVKo7LYoCaZGlGWamWkFNqUcTxnyynXuN57R1VxdLZFdyoEFL-siolVcWY1Gu4mwzgv9v3guvG9_45_AAGXbPY</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Zhang, Guangxu</creator><creator>Wei, Xuezhe</creator><creator>Chen, Siqi</creator><creator>Han, Guangshuai</creator><creator>Zhu, Jiangong</creator><creator>Dai, Haifeng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5322-2019</orcidid></search><sort><creationdate>20220523</creationdate><title>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</title><author>Zhang, Guangxu ; Wei, Xuezhe ; Chen, Siqi ; Han, Guangshuai ; Zhu, Jiangong ; Dai, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangxu</creatorcontrib><creatorcontrib>Wei, Xuezhe</creatorcontrib><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Han, Guangshuai</creatorcontrib><creatorcontrib>Zhu, Jiangong</creatorcontrib><creatorcontrib>Dai, Haifeng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangxu</au><au>Wei, Xuezhe</au><au>Chen, Siqi</au><au>Han, Guangshuai</au><au>Zhu, Jiangong</au><au>Dai, Haifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-05-23</date><risdate>2022</risdate><volume>5</volume><issue>5</issue><spage>6462</spage><epage>6471</epage><pages>6462-6471</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c00957</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5322-2019</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2022-05, Vol.5 (5), p.6462-6471 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaem_2c00957 |
source | ACS Publications |
title | Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T17%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20the%20Degradation%20Mechanisms%20of%20Lithium-Ion%20Batteries%20under%20Low-Temperature%20High-Rate%20Cycling&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Zhang,%20Guangxu&rft.date=2022-05-23&rft.volume=5&rft.issue=5&rft.spage=6462&rft.epage=6471&rft.pages=6462-6471&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c00957&rft_dat=%3Cacs_cross%3Ea923915241%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |