Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling

Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2022-05, Vol.5 (5), p.6462-6471
Hauptverfasser: Zhang, Guangxu, Wei, Xuezhe, Chen, Siqi, Han, Guangshuai, Zhu, Jiangong, Dai, Haifeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6471
container_issue 5
container_start_page 6462
container_title ACS applied energy materials
container_volume 5
creator Zhang, Guangxu
Wei, Xuezhe
Chen, Siqi
Han, Guangshuai
Zhu, Jiangong
Dai, Haifeng
description Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization.
doi_str_mv 10.1021/acsaem.2c00957
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_2c00957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a923915241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</originalsourceid><addsrcrecordid>eNp1kMtLw0AQxhdRsNRePe9ZSJ3dPLZ71PpoISJIPYdhM0m2NEnZ3Sj9742kBy-e5pvH9zH8GLsVsBQgxT0aj9QupQHQqbpgM5mqJAKdycs_-potvN8DgNAik1rPmN12X-SDrTHYvuOhIf5EtcNy6t_INNhZ33reVzy3obFDG23HzSOGQM6S50NXkuN5_x3tqD2SwzA44htbN9EHBuLrkznYrr5hVxUePC3Odc4-X553602Uv79u1w95hFIlIYpVBphmMVaxUACVBoW6JJUmKVBSKUhwRSVKo7LYoCaZGlGWamWkFNqUcTxnyynXuN57R1VxdLZFdyoEFL-siolVcWY1Gu4mwzgv9v3guvG9_45_AAGXbPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</title><source>ACS Publications</source><creator>Zhang, Guangxu ; Wei, Xuezhe ; Chen, Siqi ; Han, Guangshuai ; Zhu, Jiangong ; Dai, Haifeng</creator><creatorcontrib>Zhang, Guangxu ; Wei, Xuezhe ; Chen, Siqi ; Han, Guangshuai ; Zhu, Jiangong ; Dai, Haifeng</creatorcontrib><description>Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c00957</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-05, Vol.5 (5), p.6462-6471</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</citedby><cites>FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</cites><orcidid>0000-0001-5322-2019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c00957$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c00957$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Zhang, Guangxu</creatorcontrib><creatorcontrib>Wei, Xuezhe</creatorcontrib><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Han, Guangshuai</creatorcontrib><creatorcontrib>Zhu, Jiangong</creatorcontrib><creatorcontrib>Dai, Haifeng</creatorcontrib><title>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLw0AQxhdRsNRePe9ZSJ3dPLZ71PpoISJIPYdhM0m2NEnZ3Sj9742kBy-e5pvH9zH8GLsVsBQgxT0aj9QupQHQqbpgM5mqJAKdycs_-potvN8DgNAik1rPmN12X-SDrTHYvuOhIf5EtcNy6t_INNhZ33reVzy3obFDG23HzSOGQM6S50NXkuN5_x3tqD2SwzA44htbN9EHBuLrkznYrr5hVxUePC3Odc4-X553602Uv79u1w95hFIlIYpVBphmMVaxUACVBoW6JJUmKVBSKUhwRSVKo7LYoCaZGlGWamWkFNqUcTxnyynXuN57R1VxdLZFdyoEFL-siolVcWY1Gu4mwzgv9v3guvG9_45_AAGXbPY</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Zhang, Guangxu</creator><creator>Wei, Xuezhe</creator><creator>Chen, Siqi</creator><creator>Han, Guangshuai</creator><creator>Zhu, Jiangong</creator><creator>Dai, Haifeng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5322-2019</orcidid></search><sort><creationdate>20220523</creationdate><title>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</title><author>Zhang, Guangxu ; Wei, Xuezhe ; Chen, Siqi ; Han, Guangshuai ; Zhu, Jiangong ; Dai, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-3760a563af31700f907a9de75450e4f704a8eda2c763ca9e25c1dd78c2219cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangxu</creatorcontrib><creatorcontrib>Wei, Xuezhe</creatorcontrib><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Han, Guangshuai</creatorcontrib><creatorcontrib>Zhu, Jiangong</creatorcontrib><creatorcontrib>Dai, Haifeng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangxu</au><au>Wei, Xuezhe</au><au>Chen, Siqi</au><au>Han, Guangshuai</au><au>Zhu, Jiangong</au><au>Dai, Haifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-05-23</date><risdate>2022</risdate><volume>5</volume><issue>5</issue><spage>6462</spage><epage>6471</epage><pages>6462-6471</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Low-temperature high-rate cycling leads to accelerated performance degradation of lithium-ion batteries, which seriously hampers the large-scale popularization of electric vehicles. To clarify the battery degradation characteristics and mechanisms, this work conducts an in-depth investigation on the commercial lithium-ion batteries with 37 A h during the long-term cycling under low-temperature high-rate charging. The battery capacity displays the decelerating degradation trend during the long-term cycling, and the battery capacity recovery rate is as high as 80–90%. Furthermore, it is interesting that the constant current discharge capacity exhibits jumping behavior at around 120th cycle during the discharge process. By postmortem characterization analysis, it is found that lithium plating is the primary degradation mechanism. Lithium plating exhibits nonuniformity and displays a decelerating trend in the later stage. In view of the lower temperature, the plated lithium can better retain the reaction activity, which results in a higher capacity recovery rate. Besides, lithium plating increases the internal polarization, which makes the constant current discharge capacity jump when lithium plating reaches a certain level. The findings can provide certain references for battery optimization.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c00957</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5322-2019</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2022-05, Vol.5 (5), p.6462-6471
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_2c00957
source ACS Publications
title Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T07%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20the%20Degradation%20Mechanisms%20of%20Lithium-Ion%20Batteries%20under%20Low-Temperature%20High-Rate%20Cycling&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Zhang,%20Guangxu&rft.date=2022-05-23&rft.volume=5&rft.issue=5&rft.spage=6462&rft.epage=6471&rft.pages=6462-6471&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c00957&rft_dat=%3Cacs_cross%3Ea923915241%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true