Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability

Nickel-rich cathode materials in lithium-ion batteries are in the spotlight for high energy capacity, but they have the disadvantage of poor long-term stability due to interfacial phase changes and side reactions. We introduce a plasma-assisted mechanochemical composite process for covalently bondin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2022-04, Vol.5 (4), p.4808-4816
Hauptverfasser: Ko, Hyein, Kim, Minsung, Hong, Soo Yeong, Cho, Jinhan, Lee, Sang-Soo, Park, Jong Hyuk, Son, Jeong Gon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4816
container_issue 4
container_start_page 4808
container_title ACS applied energy materials
container_volume 5
creator Ko, Hyein
Kim, Minsung
Hong, Soo Yeong
Cho, Jinhan
Lee, Sang-Soo
Park, Jong Hyuk
Son, Jeong Gon
description Nickel-rich cathode materials in lithium-ion batteries are in the spotlight for high energy capacity, but they have the disadvantage of poor long-term stability due to interfacial phase changes and side reactions. We introduce a plasma-assisted mechanochemical composite process for covalently bonding polyvinylidene fluoride (PVDF) with high ionic conductivity to LiNi0.8Co0.1Mn0.1O2 (NCM811) particles in the dry-state electrode fabrication process. When plasma and mechanical friction are applied simultaneously, chemically inert PVDF is firmly and uniformly coated on NCM811 particles with a unique Ni–C covalent bond acting as an excellent cathode–electrolyte interface to inhibit transition metal dissolution and parasitic side reactions. In addition, PVDF has excellent ion conductivity and elasticity, so structural stability against the repetitive volume change can be achieved without interfering with lithium-ion transport. The PVDF-bonded Ni-rich cathode exhibits a high specific capacity of 215.2 mAh g–1 at 0.5 C, improved rate capability of 165.9 mAh g–1 at 5 C, and excellent cycle stability with a capacity retention of 83.6% after 300 cycles. This approach can maximize the electrochemical performance of conventional materials through one simple plasma-assisted composite process that controls the surface properties of cathode materials in the dry state.
doi_str_mv 10.1021/acsaem.2c00244
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_2c00244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b895257223</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1194-d9e6de99e8e753aaf13929c46e4d5590348ffb9e4d2969f0e0df46a91abf4eb73</originalsourceid><addsrcrecordid>eNp1UMtOwzAQjBBIVIUrZ5-RUmzHSetjiXhUaqEqcI42zpq4SuLKTivlV_haXLUHLpx2djQzu5ooumN0wihnD6A8YDvhilIuxEU04ulUxFRm_PIPvo5uvd9SSplkGZdyFP2sG_AtxHPvje-xIitUNXRW1dgGwg2ktyS3B2iw65uBPNquIgvbxXkAe9Wb7pusbTO06PxR-mbijVE1yaGvbYVkBT06A40n2jqyaHfOHsKVfFCNUeSjh9I0ph8IhNhN0Abj7szdRFc6GPH2PMfR1_PTZ_4aL99fFvl8GQNjUsSVxKxCKXGG0zQB0CyRXCqRoajSVNJEzLQuZdi4zKSmSCstMpAMSi2wnCbjaHLKVc5671AXO2dacEPBaHEstziVW5zLDYb7kyHwxdbuXRfe-0_8C_gyf3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability</title><source>ACS Publications</source><creator>Ko, Hyein ; Kim, Minsung ; Hong, Soo Yeong ; Cho, Jinhan ; Lee, Sang-Soo ; Park, Jong Hyuk ; Son, Jeong Gon</creator><creatorcontrib>Ko, Hyein ; Kim, Minsung ; Hong, Soo Yeong ; Cho, Jinhan ; Lee, Sang-Soo ; Park, Jong Hyuk ; Son, Jeong Gon</creatorcontrib><description>Nickel-rich cathode materials in lithium-ion batteries are in the spotlight for high energy capacity, but they have the disadvantage of poor long-term stability due to interfacial phase changes and side reactions. We introduce a plasma-assisted mechanochemical composite process for covalently bonding polyvinylidene fluoride (PVDF) with high ionic conductivity to LiNi0.8Co0.1Mn0.1O2 (NCM811) particles in the dry-state electrode fabrication process. When plasma and mechanical friction are applied simultaneously, chemically inert PVDF is firmly and uniformly coated on NCM811 particles with a unique Ni–C covalent bond acting as an excellent cathode–electrolyte interface to inhibit transition metal dissolution and parasitic side reactions. In addition, PVDF has excellent ion conductivity and elasticity, so structural stability against the repetitive volume change can be achieved without interfering with lithium-ion transport. The PVDF-bonded Ni-rich cathode exhibits a high specific capacity of 215.2 mAh g–1 at 0.5 C, improved rate capability of 165.9 mAh g–1 at 5 C, and excellent cycle stability with a capacity retention of 83.6% after 300 cycles. This approach can maximize the electrochemical performance of conventional materials through one simple plasma-assisted composite process that controls the surface properties of cathode materials in the dry state.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c00244</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-04, Vol.5 (4), p.4808-4816</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1194-d9e6de99e8e753aaf13929c46e4d5590348ffb9e4d2969f0e0df46a91abf4eb73</citedby><cites>FETCH-LOGICAL-a1194-d9e6de99e8e753aaf13929c46e4d5590348ffb9e4d2969f0e0df46a91abf4eb73</cites><orcidid>0000-0003-3473-446X ; 0000-0001-5896-6471 ; 0000-0002-9554-4523 ; 0000-0002-7097-5968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c00244$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c00244$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ko, Hyein</creatorcontrib><creatorcontrib>Kim, Minsung</creatorcontrib><creatorcontrib>Hong, Soo Yeong</creatorcontrib><creatorcontrib>Cho, Jinhan</creatorcontrib><creatorcontrib>Lee, Sang-Soo</creatorcontrib><creatorcontrib>Park, Jong Hyuk</creatorcontrib><creatorcontrib>Son, Jeong Gon</creatorcontrib><title>Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Nickel-rich cathode materials in lithium-ion batteries are in the spotlight for high energy capacity, but they have the disadvantage of poor long-term stability due to interfacial phase changes and side reactions. We introduce a plasma-assisted mechanochemical composite process for covalently bonding polyvinylidene fluoride (PVDF) with high ionic conductivity to LiNi0.8Co0.1Mn0.1O2 (NCM811) particles in the dry-state electrode fabrication process. When plasma and mechanical friction are applied simultaneously, chemically inert PVDF is firmly and uniformly coated on NCM811 particles with a unique Ni–C covalent bond acting as an excellent cathode–electrolyte interface to inhibit transition metal dissolution and parasitic side reactions. In addition, PVDF has excellent ion conductivity and elasticity, so structural stability against the repetitive volume change can be achieved without interfering with lithium-ion transport. The PVDF-bonded Ni-rich cathode exhibits a high specific capacity of 215.2 mAh g–1 at 0.5 C, improved rate capability of 165.9 mAh g–1 at 5 C, and excellent cycle stability with a capacity retention of 83.6% after 300 cycles. This approach can maximize the electrochemical performance of conventional materials through one simple plasma-assisted composite process that controls the surface properties of cathode materials in the dry state.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQjBBIVIUrZ5-RUmzHSetjiXhUaqEqcI42zpq4SuLKTivlV_haXLUHLpx2djQzu5ooumN0wihnD6A8YDvhilIuxEU04ulUxFRm_PIPvo5uvd9SSplkGZdyFP2sG_AtxHPvje-xIitUNXRW1dgGwg2ktyS3B2iw65uBPNquIgvbxXkAe9Wb7pusbTO06PxR-mbijVE1yaGvbYVkBT06A40n2jqyaHfOHsKVfFCNUeSjh9I0ph8IhNhN0Abj7szdRFc6GPH2PMfR1_PTZ_4aL99fFvl8GQNjUsSVxKxCKXGG0zQB0CyRXCqRoajSVNJEzLQuZdi4zKSmSCstMpAMSi2wnCbjaHLKVc5671AXO2dacEPBaHEstziVW5zLDYb7kyHwxdbuXRfe-0_8C_gyf3Y</recordid><startdate>20220425</startdate><enddate>20220425</enddate><creator>Ko, Hyein</creator><creator>Kim, Minsung</creator><creator>Hong, Soo Yeong</creator><creator>Cho, Jinhan</creator><creator>Lee, Sang-Soo</creator><creator>Park, Jong Hyuk</creator><creator>Son, Jeong Gon</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3473-446X</orcidid><orcidid>https://orcid.org/0000-0001-5896-6471</orcidid><orcidid>https://orcid.org/0000-0002-9554-4523</orcidid><orcidid>https://orcid.org/0000-0002-7097-5968</orcidid></search><sort><creationdate>20220425</creationdate><title>Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability</title><author>Ko, Hyein ; Kim, Minsung ; Hong, Soo Yeong ; Cho, Jinhan ; Lee, Sang-Soo ; Park, Jong Hyuk ; Son, Jeong Gon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1194-d9e6de99e8e753aaf13929c46e4d5590348ffb9e4d2969f0e0df46a91abf4eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Hyein</creatorcontrib><creatorcontrib>Kim, Minsung</creatorcontrib><creatorcontrib>Hong, Soo Yeong</creatorcontrib><creatorcontrib>Cho, Jinhan</creatorcontrib><creatorcontrib>Lee, Sang-Soo</creatorcontrib><creatorcontrib>Park, Jong Hyuk</creatorcontrib><creatorcontrib>Son, Jeong Gon</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Hyein</au><au>Kim, Minsung</au><au>Hong, Soo Yeong</au><au>Cho, Jinhan</au><au>Lee, Sang-Soo</au><au>Park, Jong Hyuk</au><au>Son, Jeong Gon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-04-25</date><risdate>2022</risdate><volume>5</volume><issue>4</issue><spage>4808</spage><epage>4816</epage><pages>4808-4816</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Nickel-rich cathode materials in lithium-ion batteries are in the spotlight for high energy capacity, but they have the disadvantage of poor long-term stability due to interfacial phase changes and side reactions. We introduce a plasma-assisted mechanochemical composite process for covalently bonding polyvinylidene fluoride (PVDF) with high ionic conductivity to LiNi0.8Co0.1Mn0.1O2 (NCM811) particles in the dry-state electrode fabrication process. When plasma and mechanical friction are applied simultaneously, chemically inert PVDF is firmly and uniformly coated on NCM811 particles with a unique Ni–C covalent bond acting as an excellent cathode–electrolyte interface to inhibit transition metal dissolution and parasitic side reactions. In addition, PVDF has excellent ion conductivity and elasticity, so structural stability against the repetitive volume change can be achieved without interfering with lithium-ion transport. The PVDF-bonded Ni-rich cathode exhibits a high specific capacity of 215.2 mAh g–1 at 0.5 C, improved rate capability of 165.9 mAh g–1 at 5 C, and excellent cycle stability with a capacity retention of 83.6% after 300 cycles. This approach can maximize the electrochemical performance of conventional materials through one simple plasma-assisted composite process that controls the surface properties of cathode materials in the dry state.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c00244</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3473-446X</orcidid><orcidid>https://orcid.org/0000-0001-5896-6471</orcidid><orcidid>https://orcid.org/0000-0002-9554-4523</orcidid><orcidid>https://orcid.org/0000-0002-7097-5968</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2022-04, Vol.5 (4), p.4808-4816
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_2c00244
source ACS Publications
title Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-Assisted%20Mechanochemistry%20to%20Covalently%20Bond%20Ion-Conducting%20Polymers%20to%20Ni-Rich%20Cathode%20Materials%20for%20Improved%20Cyclic%20Stability%20and%20Rate%20Capability&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Ko,%20Hyein&rft.date=2022-04-25&rft.volume=5&rft.issue=4&rft.spage=4808&rft.epage=4816&rft.pages=4808-4816&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c00244&rft_dat=%3Cacs_cross%3Eb895257223%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true