Improving the Electrochemical Performance of a Lithium-Rich Layered Cathode with an In Situ Transformed Layered@Spinel@Spinel Heterostructure
Lithium-rich layered oxides have attracted much attention due to their high discharge capacity (>250 mA h·g–1). However, lithium-rich layered cathodes suffer from poor rate capabilities and voltage decay, which seriously limit their practical application. Herein, a unique layered@spinel@spinel do...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2021-10, Vol.4 (10), p.11014-11025 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11025 |
---|---|
container_issue | 10 |
container_start_page | 11014 |
container_title | ACS applied energy materials |
container_volume | 4 |
creator | Yuan, Shenghua Guo, Jian Ma, Yue Zhou, Ying Zhang, Hongzhou Song, Dawei Shi, Xixi Zhang, Lianqi |
description | Lithium-rich layered oxides have attracted much attention due to their high discharge capacity (>250 mA h·g–1). However, lithium-rich layered cathodes suffer from poor rate capabilities and voltage decay, which seriously limit their practical application. Herein, a unique layered@spinel@spinel double-spinel shell heterostructure is designed and successfully synthesized via coprecipitation and high-temperature solid-phase methods. In particular, lithium-rich layered oxides show good rate capabilities and high capacity retention when the molar amount of cobalt acetate and manganese acetate is 5%. After 100 cycles at 0.2 C, a discharge capacity of 232 mA h g–1 and a capacity retention of 92.7% can be obtained. The superior electrochemical performance of the in situ-transformed Li-rich layered cathode can be attributed to the unique three-dimensional diffusion channels for Li ions of the surface spinel phase. Besides, the in situ-transformed LiCoMnO4 shell can also improve the structural stability of the Li-rich layered oxides by reducing the side reactions and protecting the material from being corroded by the electrolyte. This study provides a strategy for surface modification, which can effectively improve the electrochemical performance of Li-rich layered cathode materials with high performance. |
doi_str_mv | 10.1021/acsaem.1c01955 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_1c01955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f22230673</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-8c1f4b767f6702db0a56cf8de08a8140746f1f785716e005a6bc9ba58e5f556b3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsNRePe9ZSN2N2d3kppRqCwHF1nOYbGbNlvwpm43SD-F3NiU5ePH0hpnfmxkeIbecLTkL-T3oDrBecs14IsQFmYVCRQFLZHj5p74mi647MDZAXIZJMiM_2_ro2i_bfFJfIl1XqL1rdYm11VDRN3SmdTU0GmlrKNDU-tL2dfBudUlTOKHDgq7Al22B9HsYUmjotqE763u6d9B0Z__ATOzj7mgbrCahG_To2s67Xvve4Q25MlB1uJh0Tj6e1_vVJkhfX7arpzSAUEU-iDU3Ua6kMlKxsMgZCKlNXCCLIeYRU5E03KhYKC6RMQEy10kOIkZhhJD5w5wsx716ON45NNnR2RrcKeMsO-eZjXlmU56D4W40DP3s0PauGd77D_4F0wN6mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving the Electrochemical Performance of a Lithium-Rich Layered Cathode with an In Situ Transformed Layered@Spinel@Spinel Heterostructure</title><source>ACS Publications</source><creator>Yuan, Shenghua ; Guo, Jian ; Ma, Yue ; Zhou, Ying ; Zhang, Hongzhou ; Song, Dawei ; Shi, Xixi ; Zhang, Lianqi</creator><creatorcontrib>Yuan, Shenghua ; Guo, Jian ; Ma, Yue ; Zhou, Ying ; Zhang, Hongzhou ; Song, Dawei ; Shi, Xixi ; Zhang, Lianqi</creatorcontrib><description>Lithium-rich layered oxides have attracted much attention due to their high discharge capacity (>250 mA h·g–1). However, lithium-rich layered cathodes suffer from poor rate capabilities and voltage decay, which seriously limit their practical application. Herein, a unique layered@spinel@spinel double-spinel shell heterostructure is designed and successfully synthesized via coprecipitation and high-temperature solid-phase methods. In particular, lithium-rich layered oxides show good rate capabilities and high capacity retention when the molar amount of cobalt acetate and manganese acetate is 5%. After 100 cycles at 0.2 C, a discharge capacity of 232 mA h g–1 and a capacity retention of 92.7% can be obtained. The superior electrochemical performance of the in situ-transformed Li-rich layered cathode can be attributed to the unique three-dimensional diffusion channels for Li ions of the surface spinel phase. Besides, the in situ-transformed LiCoMnO4 shell can also improve the structural stability of the Li-rich layered oxides by reducing the side reactions and protecting the material from being corroded by the electrolyte. This study provides a strategy for surface modification, which can effectively improve the electrochemical performance of Li-rich layered cathode materials with high performance.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.1c01955</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2021-10, Vol.4 (10), p.11014-11025</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-8c1f4b767f6702db0a56cf8de08a8140746f1f785716e005a6bc9ba58e5f556b3</citedby><cites>FETCH-LOGICAL-a274t-8c1f4b767f6702db0a56cf8de08a8140746f1f785716e005a6bc9ba58e5f556b3</cites><orcidid>0000-0003-2165-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.1c01955$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.1c01955$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Yuan, Shenghua</creatorcontrib><creatorcontrib>Guo, Jian</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Zhang, Hongzhou</creatorcontrib><creatorcontrib>Song, Dawei</creatorcontrib><creatorcontrib>Shi, Xixi</creatorcontrib><creatorcontrib>Zhang, Lianqi</creatorcontrib><title>Improving the Electrochemical Performance of a Lithium-Rich Layered Cathode with an In Situ Transformed Layered@Spinel@Spinel Heterostructure</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Lithium-rich layered oxides have attracted much attention due to their high discharge capacity (>250 mA h·g–1). However, lithium-rich layered cathodes suffer from poor rate capabilities and voltage decay, which seriously limit their practical application. Herein, a unique layered@spinel@spinel double-spinel shell heterostructure is designed and successfully synthesized via coprecipitation and high-temperature solid-phase methods. In particular, lithium-rich layered oxides show good rate capabilities and high capacity retention when the molar amount of cobalt acetate and manganese acetate is 5%. After 100 cycles at 0.2 C, a discharge capacity of 232 mA h g–1 and a capacity retention of 92.7% can be obtained. The superior electrochemical performance of the in situ-transformed Li-rich layered cathode can be attributed to the unique three-dimensional diffusion channels for Li ions of the surface spinel phase. Besides, the in situ-transformed LiCoMnO4 shell can also improve the structural stability of the Li-rich layered oxides by reducing the side reactions and protecting the material from being corroded by the electrolyte. This study provides a strategy for surface modification, which can effectively improve the electrochemical performance of Li-rich layered cathode materials with high performance.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsNRePe9ZSN2N2d3kppRqCwHF1nOYbGbNlvwpm43SD-F3NiU5ePH0hpnfmxkeIbecLTkL-T3oDrBecs14IsQFmYVCRQFLZHj5p74mi647MDZAXIZJMiM_2_ro2i_bfFJfIl1XqL1rdYm11VDRN3SmdTU0GmlrKNDU-tL2dfBudUlTOKHDgq7Al22B9HsYUmjotqE763u6d9B0Z__ATOzj7mgbrCahG_To2s67Xvve4Q25MlB1uJh0Tj6e1_vVJkhfX7arpzSAUEU-iDU3Ua6kMlKxsMgZCKlNXCCLIeYRU5E03KhYKC6RMQEy10kOIkZhhJD5w5wsx716ON45NNnR2RrcKeMsO-eZjXlmU56D4W40DP3s0PauGd77D_4F0wN6mg</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Yuan, Shenghua</creator><creator>Guo, Jian</creator><creator>Ma, Yue</creator><creator>Zhou, Ying</creator><creator>Zhang, Hongzhou</creator><creator>Song, Dawei</creator><creator>Shi, Xixi</creator><creator>Zhang, Lianqi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2165-7995</orcidid></search><sort><creationdate>20211025</creationdate><title>Improving the Electrochemical Performance of a Lithium-Rich Layered Cathode with an In Situ Transformed Layered@Spinel@Spinel Heterostructure</title><author>Yuan, Shenghua ; Guo, Jian ; Ma, Yue ; Zhou, Ying ; Zhang, Hongzhou ; Song, Dawei ; Shi, Xixi ; Zhang, Lianqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-8c1f4b767f6702db0a56cf8de08a8140746f1f785716e005a6bc9ba58e5f556b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Shenghua</creatorcontrib><creatorcontrib>Guo, Jian</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Zhang, Hongzhou</creatorcontrib><creatorcontrib>Song, Dawei</creatorcontrib><creatorcontrib>Shi, Xixi</creatorcontrib><creatorcontrib>Zhang, Lianqi</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Shenghua</au><au>Guo, Jian</au><au>Ma, Yue</au><au>Zhou, Ying</au><au>Zhang, Hongzhou</au><au>Song, Dawei</au><au>Shi, Xixi</au><au>Zhang, Lianqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Electrochemical Performance of a Lithium-Rich Layered Cathode with an In Situ Transformed Layered@Spinel@Spinel Heterostructure</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>4</volume><issue>10</issue><spage>11014</spage><epage>11025</epage><pages>11014-11025</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Lithium-rich layered oxides have attracted much attention due to their high discharge capacity (>250 mA h·g–1). However, lithium-rich layered cathodes suffer from poor rate capabilities and voltage decay, which seriously limit their practical application. Herein, a unique layered@spinel@spinel double-spinel shell heterostructure is designed and successfully synthesized via coprecipitation and high-temperature solid-phase methods. In particular, lithium-rich layered oxides show good rate capabilities and high capacity retention when the molar amount of cobalt acetate and manganese acetate is 5%. After 100 cycles at 0.2 C, a discharge capacity of 232 mA h g–1 and a capacity retention of 92.7% can be obtained. The superior electrochemical performance of the in situ-transformed Li-rich layered cathode can be attributed to the unique three-dimensional diffusion channels for Li ions of the surface spinel phase. Besides, the in situ-transformed LiCoMnO4 shell can also improve the structural stability of the Li-rich layered oxides by reducing the side reactions and protecting the material from being corroded by the electrolyte. This study provides a strategy for surface modification, which can effectively improve the electrochemical performance of Li-rich layered cathode materials with high performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.1c01955</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2165-7995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2021-10, Vol.4 (10), p.11014-11025 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaem_1c01955 |
source | ACS Publications |
title | Improving the Electrochemical Performance of a Lithium-Rich Layered Cathode with an In Situ Transformed Layered@Spinel@Spinel Heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Electrochemical%20Performance%20of%20a%20Lithium-Rich%20Layered%20Cathode%20with%20an%20In%20Situ%20Transformed%20Layered@Spinel@Spinel%20Heterostructure&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Yuan,%20Shenghua&rft.date=2021-10-25&rft.volume=4&rft.issue=10&rft.spage=11014&rft.epage=11025&rft.pages=11014-11025&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.1c01955&rft_dat=%3Cacs_cross%3Ef22230673%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |