Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials

Ni-rich cathode (Ni > 0.8) provides a low-cost and high-energy-density solution to the next-generation lithium-ion batteries. Unfortunately, severe capacity fading of Ni-rich cathode caused by the interfacial and bulk structural degradation impeded its application. Herein, Zr doping and Li6Zr2O7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2020-12, Vol.3 (12), p.11741-11751
Hauptverfasser: Li, Qiang, Li, Zhao, Wu, Shuaijin, Wang, Zhong, Liu, Xingge, Li, Wenjin, Li, Ning, Wang, Jiantao, Zhuang, Weidong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11751
container_issue 12
container_start_page 11741
container_title ACS applied energy materials
container_volume 3
creator Li, Qiang
Li, Zhao
Wu, Shuaijin
Wang, Zhong
Liu, Xingge
Li, Wenjin
Li, Ning
Wang, Jiantao
Zhuang, Weidong
description Ni-rich cathode (Ni > 0.8) provides a low-cost and high-energy-density solution to the next-generation lithium-ion batteries. Unfortunately, severe capacity fading of Ni-rich cathode caused by the interfacial and bulk structural degradation impeded its application. Herein, Zr doping and Li6Zr2O7 coating are applied to a Ni-rich LiNi0.83Co0.12Mn0.05O2 (NCM) layered cathode material, and the modified material exhibits excellent cycle stability. The 1%Zr-NCM cathode material maintains a discharge capacity of 173.9 mAh g–1 at 1 C after 200 cycles in the 2.5–4.3 V voltage range at 25 °C, corresponding to a capacity retention of 94.6%; however, the unmodified NCM only delivers 129.9 mAh g–1 (capacity retention 68.6%). The synergistic effect of bulk Zr doping and surface Li6Zr2O7 coating improves the cycle stability of the Ni-rich material. Zr doped into the bulk could form a strong Zr–O bond to stabilize the layered structure, and Zr located in the Li layer can act as a pillar to maintain the layered structure and reduce Li+/Ni2+ mixing. In addition, the Li6Zr2O7 coating layer can also play a dual role in promoting Li+ migration and suppressing surface side reactions. This work demonstrates that sufficiently utilizing zirconium to enhance the electrochemical performance of cathode materials is a feasible and promising strategy.
doi_str_mv 10.1021/acsaem.0c01851
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_0c01851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c635473824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-a2bec98e7a89c197e1b9c16ee0092cb72dbf895fa0343ac2e82f5e121fc0f6493</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqvnnMWtibZzxyltirUD8RevCzZ6cRN2U0kScX617vaHrx4mTfMzHsMP0LOOZtyJvilgqCwnzJgvMr5ERmJvMwSJgtx_Kc_JZMQNowxLnkhpByRz1U0nfky9o1emw_0AeliayEaZwN1mr4aD86abU-jo3PbKgtIY4t03iFE76DF3oDq6BN67Xz_ux98DyZ5NtDSpdqhxzWdqdi6NdJ7FdEb1YUzcqIHwclBx2S1mL_MbpPl483d7GqZKFFmcagNgqywVJUELkvkzaAFImNSQFOKdaMrmWvF0ixVILASOkcuuAami0ymYzLd54J3IXjU9bs3vfK7mrP6B129R1cf0A2Gi71hmNcbt_V2eO-_42_N-3MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials</title><source>American Chemical Society Publications</source><creator>Li, Qiang ; Li, Zhao ; Wu, Shuaijin ; Wang, Zhong ; Liu, Xingge ; Li, Wenjin ; Li, Ning ; Wang, Jiantao ; Zhuang, Weidong</creator><creatorcontrib>Li, Qiang ; Li, Zhao ; Wu, Shuaijin ; Wang, Zhong ; Liu, Xingge ; Li, Wenjin ; Li, Ning ; Wang, Jiantao ; Zhuang, Weidong</creatorcontrib><description>Ni-rich cathode (Ni &gt; 0.8) provides a low-cost and high-energy-density solution to the next-generation lithium-ion batteries. Unfortunately, severe capacity fading of Ni-rich cathode caused by the interfacial and bulk structural degradation impeded its application. Herein, Zr doping and Li6Zr2O7 coating are applied to a Ni-rich LiNi0.83Co0.12Mn0.05O2 (NCM) layered cathode material, and the modified material exhibits excellent cycle stability. The 1%Zr-NCM cathode material maintains a discharge capacity of 173.9 mAh g–1 at 1 C after 200 cycles in the 2.5–4.3 V voltage range at 25 °C, corresponding to a capacity retention of 94.6%; however, the unmodified NCM only delivers 129.9 mAh g–1 (capacity retention 68.6%). The synergistic effect of bulk Zr doping and surface Li6Zr2O7 coating improves the cycle stability of the Ni-rich material. Zr doped into the bulk could form a strong Zr–O bond to stabilize the layered structure, and Zr located in the Li layer can act as a pillar to maintain the layered structure and reduce Li+/Ni2+ mixing. In addition, the Li6Zr2O7 coating layer can also play a dual role in promoting Li+ migration and suppressing surface side reactions. This work demonstrates that sufficiently utilizing zirconium to enhance the electrochemical performance of cathode materials is a feasible and promising strategy.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.0c01851</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2020-12, Vol.3 (12), p.11741-11751</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-a2bec98e7a89c197e1b9c16ee0092cb72dbf895fa0343ac2e82f5e121fc0f6493</citedby><cites>FETCH-LOGICAL-a274t-a2bec98e7a89c197e1b9c16ee0092cb72dbf895fa0343ac2e82f5e121fc0f6493</cites><orcidid>0000-0001-5088-0892 ; 0000-0002-2254-7723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.0c01851$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.0c01851$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Wu, Shuaijin</creatorcontrib><creatorcontrib>Wang, Zhong</creatorcontrib><creatorcontrib>Liu, Xingge</creatorcontrib><creatorcontrib>Li, Wenjin</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Jiantao</creatorcontrib><creatorcontrib>Zhuang, Weidong</creatorcontrib><title>Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Ni-rich cathode (Ni &gt; 0.8) provides a low-cost and high-energy-density solution to the next-generation lithium-ion batteries. Unfortunately, severe capacity fading of Ni-rich cathode caused by the interfacial and bulk structural degradation impeded its application. Herein, Zr doping and Li6Zr2O7 coating are applied to a Ni-rich LiNi0.83Co0.12Mn0.05O2 (NCM) layered cathode material, and the modified material exhibits excellent cycle stability. The 1%Zr-NCM cathode material maintains a discharge capacity of 173.9 mAh g–1 at 1 C after 200 cycles in the 2.5–4.3 V voltage range at 25 °C, corresponding to a capacity retention of 94.6%; however, the unmodified NCM only delivers 129.9 mAh g–1 (capacity retention 68.6%). The synergistic effect of bulk Zr doping and surface Li6Zr2O7 coating improves the cycle stability of the Ni-rich material. Zr doped into the bulk could form a strong Zr–O bond to stabilize the layered structure, and Zr located in the Li layer can act as a pillar to maintain the layered structure and reduce Li+/Ni2+ mixing. In addition, the Li6Zr2O7 coating layer can also play a dual role in promoting Li+ migration and suppressing surface side reactions. This work demonstrates that sufficiently utilizing zirconium to enhance the electrochemical performance of cathode materials is a feasible and promising strategy.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWGqvnnMWtibZzxyltirUD8RevCzZ6cRN2U0kScX617vaHrx4mTfMzHsMP0LOOZtyJvilgqCwnzJgvMr5ERmJvMwSJgtx_Kc_JZMQNowxLnkhpByRz1U0nfky9o1emw_0AeliayEaZwN1mr4aD86abU-jo3PbKgtIY4t03iFE76DF3oDq6BN67Xz_ux98DyZ5NtDSpdqhxzWdqdi6NdJ7FdEb1YUzcqIHwclBx2S1mL_MbpPl483d7GqZKFFmcagNgqywVJUELkvkzaAFImNSQFOKdaMrmWvF0ixVILASOkcuuAami0ymYzLd54J3IXjU9bs3vfK7mrP6B129R1cf0A2Gi71hmNcbt_V2eO-_42_N-3MA</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Li, Qiang</creator><creator>Li, Zhao</creator><creator>Wu, Shuaijin</creator><creator>Wang, Zhong</creator><creator>Liu, Xingge</creator><creator>Li, Wenjin</creator><creator>Li, Ning</creator><creator>Wang, Jiantao</creator><creator>Zhuang, Weidong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5088-0892</orcidid><orcidid>https://orcid.org/0000-0002-2254-7723</orcidid></search><sort><creationdate>20201228</creationdate><title>Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials</title><author>Li, Qiang ; Li, Zhao ; Wu, Shuaijin ; Wang, Zhong ; Liu, Xingge ; Li, Wenjin ; Li, Ning ; Wang, Jiantao ; Zhuang, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-a2bec98e7a89c197e1b9c16ee0092cb72dbf895fa0343ac2e82f5e121fc0f6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Wu, Shuaijin</creatorcontrib><creatorcontrib>Wang, Zhong</creatorcontrib><creatorcontrib>Liu, Xingge</creatorcontrib><creatorcontrib>Li, Wenjin</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Jiantao</creatorcontrib><creatorcontrib>Zhuang, Weidong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiang</au><au>Li, Zhao</au><au>Wu, Shuaijin</au><au>Wang, Zhong</au><au>Liu, Xingge</au><au>Li, Wenjin</au><au>Li, Ning</au><au>Wang, Jiantao</au><au>Zhuang, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-12-28</date><risdate>2020</risdate><volume>3</volume><issue>12</issue><spage>11741</spage><epage>11751</epage><pages>11741-11751</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Ni-rich cathode (Ni &gt; 0.8) provides a low-cost and high-energy-density solution to the next-generation lithium-ion batteries. Unfortunately, severe capacity fading of Ni-rich cathode caused by the interfacial and bulk structural degradation impeded its application. Herein, Zr doping and Li6Zr2O7 coating are applied to a Ni-rich LiNi0.83Co0.12Mn0.05O2 (NCM) layered cathode material, and the modified material exhibits excellent cycle stability. The 1%Zr-NCM cathode material maintains a discharge capacity of 173.9 mAh g–1 at 1 C after 200 cycles in the 2.5–4.3 V voltage range at 25 °C, corresponding to a capacity retention of 94.6%; however, the unmodified NCM only delivers 129.9 mAh g–1 (capacity retention 68.6%). The synergistic effect of bulk Zr doping and surface Li6Zr2O7 coating improves the cycle stability of the Ni-rich material. Zr doped into the bulk could form a strong Zr–O bond to stabilize the layered structure, and Zr located in the Li layer can act as a pillar to maintain the layered structure and reduce Li+/Ni2+ mixing. In addition, the Li6Zr2O7 coating layer can also play a dual role in promoting Li+ migration and suppressing surface side reactions. This work demonstrates that sufficiently utilizing zirconium to enhance the electrochemical performance of cathode materials is a feasible and promising strategy.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.0c01851</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5088-0892</orcidid><orcidid>https://orcid.org/0000-0002-2254-7723</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2020-12, Vol.3 (12), p.11741-11751
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_0c01851
source American Chemical Society Publications
title Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20Diverse%20Functions%20of%20Zirconium%20to%20Enhance%20the%20Electrochemical%20Performance%20of%20Ni-Rich%20Layered%20Cathode%20Materials&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Li,%20Qiang&rft.date=2020-12-28&rft.volume=3&rft.issue=12&rft.spage=11741&rft.epage=11751&rft.pages=11741-11751&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.0c01851&rft_dat=%3Cacs_cross%3Ec635473824%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true