High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films

Vanadium dioxide (VO ) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied electronic materials 2022-12, Vol.4 (12), p.6020-6028
Hauptverfasser: Birkhölzer, Yorick A, Sotthewes, Kai, Gauquelin, Nicolas, Riekehr, Lars, Jannis, Daen, van der Minne, Emma, Bu, Yibin, Verbeeck, Johan, Zandvliet, Harold J W, Koster, Gertjan, Rijnders, Guus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6028
container_issue 12
container_start_page 6020
container_title ACS applied electronic materials
container_volume 4
creator Birkhölzer, Yorick A
Sotthewes, Kai
Gauquelin, Nicolas
Riekehr, Lars
Jannis, Daen
van der Minne, Emma
Bu, Yibin
Verbeeck, Johan
Zandvliet, Harold J W
Koster, Gertjan
Rijnders, Guus
description Vanadium dioxide (VO ) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO -metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO . The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO . The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.
doi_str_mv 10.1021/acsaelm.2c01176
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaelm_2c01176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36588623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1093-d41efaab9e7f83aba762575420d0d536e701a4915f8703b6ee3aaa27c4401d673</originalsourceid><addsrcrecordid>eNpNkE1PwkAURSdGIwRZuzPzBwrz0c60S0NASDCYiGyb15lXGdN2yExZ-O-FgMbVu8m75y4OIY-cTTgTfAomAjbtRBjGuVY3ZCiU1IniXN7-ywMyjvGLsRMiUpHxezKQKstzJeSQ7Jbuc5-89wFcl6w6ezRo6dobaOirt652BnrnO-pr2u-Rzhs0ffCdM_Qt-AOG3mE8P3cbKuh27zq6cE0bH8hdDU3E8fWOyMdivp0tk_XmZTV7XieGs0ImNuVYA1QF6jqXUIFWItNZKphlNpMKNeOQFjyrc81kpRAlAAht0pRxq7Qckell1wQfY8C6PATXQvguOSvPksqrpPIq6UQ8XYjDsWrR_vV_lcgfPopjCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films</title><source>ACS Publications</source><creator>Birkhölzer, Yorick A ; Sotthewes, Kai ; Gauquelin, Nicolas ; Riekehr, Lars ; Jannis, Daen ; van der Minne, Emma ; Bu, Yibin ; Verbeeck, Johan ; Zandvliet, Harold J W ; Koster, Gertjan ; Rijnders, Guus</creator><creatorcontrib>Birkhölzer, Yorick A ; Sotthewes, Kai ; Gauquelin, Nicolas ; Riekehr, Lars ; Jannis, Daen ; van der Minne, Emma ; Bu, Yibin ; Verbeeck, Johan ; Zandvliet, Harold J W ; Koster, Gertjan ; Rijnders, Guus</creatorcontrib><description>Vanadium dioxide (VO ) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO -metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO . The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO . The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.</description><identifier>ISSN: 2637-6113</identifier><identifier>EISSN: 2637-6113</identifier><identifier>DOI: 10.1021/acsaelm.2c01176</identifier><identifier>PMID: 36588623</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied electronic materials, 2022-12, Vol.4 (12), p.6020-6028</ispartof><rights>2022 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1093-d41efaab9e7f83aba762575420d0d536e701a4915f8703b6ee3aaa27c4401d673</citedby><cites>FETCH-LOGICAL-c1093-d41efaab9e7f83aba762575420d0d536e701a4915f8703b6ee3aaa27c4401d673</cites><orcidid>0000-0001-6809-139X ; 0000-0001-5478-7329 ; 0000-0003-3133-2481 ; 0000-0003-2073-6958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2767,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36588623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birkhölzer, Yorick A</creatorcontrib><creatorcontrib>Sotthewes, Kai</creatorcontrib><creatorcontrib>Gauquelin, Nicolas</creatorcontrib><creatorcontrib>Riekehr, Lars</creatorcontrib><creatorcontrib>Jannis, Daen</creatorcontrib><creatorcontrib>van der Minne, Emma</creatorcontrib><creatorcontrib>Bu, Yibin</creatorcontrib><creatorcontrib>Verbeeck, Johan</creatorcontrib><creatorcontrib>Zandvliet, Harold J W</creatorcontrib><creatorcontrib>Koster, Gertjan</creatorcontrib><creatorcontrib>Rijnders, Guus</creatorcontrib><title>High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films</title><title>ACS applied electronic materials</title><addtitle>ACS Appl Electron Mater</addtitle><description>Vanadium dioxide (VO ) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO -metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO . The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO . The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.</description><issn>2637-6113</issn><issn>2637-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwkAURSdGIwRZuzPzBwrz0c60S0NASDCYiGyb15lXGdN2yExZ-O-FgMbVu8m75y4OIY-cTTgTfAomAjbtRBjGuVY3ZCiU1IniXN7-ywMyjvGLsRMiUpHxezKQKstzJeSQ7Jbuc5-89wFcl6w6ezRo6dobaOirt652BnrnO-pr2u-Rzhs0ffCdM_Qt-AOG3mE8P3cbKuh27zq6cE0bH8hdDU3E8fWOyMdivp0tk_XmZTV7XieGs0ImNuVYA1QF6jqXUIFWItNZKphlNpMKNeOQFjyrc81kpRAlAAht0pRxq7Qckell1wQfY8C6PATXQvguOSvPksqrpPIq6UQ8XYjDsWrR_vV_lcgfPopjCQ</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Birkhölzer, Yorick A</creator><creator>Sotthewes, Kai</creator><creator>Gauquelin, Nicolas</creator><creator>Riekehr, Lars</creator><creator>Jannis, Daen</creator><creator>van der Minne, Emma</creator><creator>Bu, Yibin</creator><creator>Verbeeck, Johan</creator><creator>Zandvliet, Harold J W</creator><creator>Koster, Gertjan</creator><creator>Rijnders, Guus</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6809-139X</orcidid><orcidid>https://orcid.org/0000-0001-5478-7329</orcidid><orcidid>https://orcid.org/0000-0003-3133-2481</orcidid><orcidid>https://orcid.org/0000-0003-2073-6958</orcidid></search><sort><creationdate>20221227</creationdate><title>High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films</title><author>Birkhölzer, Yorick A ; Sotthewes, Kai ; Gauquelin, Nicolas ; Riekehr, Lars ; Jannis, Daen ; van der Minne, Emma ; Bu, Yibin ; Verbeeck, Johan ; Zandvliet, Harold J W ; Koster, Gertjan ; Rijnders, Guus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1093-d41efaab9e7f83aba762575420d0d536e701a4915f8703b6ee3aaa27c4401d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkhölzer, Yorick A</creatorcontrib><creatorcontrib>Sotthewes, Kai</creatorcontrib><creatorcontrib>Gauquelin, Nicolas</creatorcontrib><creatorcontrib>Riekehr, Lars</creatorcontrib><creatorcontrib>Jannis, Daen</creatorcontrib><creatorcontrib>van der Minne, Emma</creatorcontrib><creatorcontrib>Bu, Yibin</creatorcontrib><creatorcontrib>Verbeeck, Johan</creatorcontrib><creatorcontrib>Zandvliet, Harold J W</creatorcontrib><creatorcontrib>Koster, Gertjan</creatorcontrib><creatorcontrib>Rijnders, Guus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkhölzer, Yorick A</au><au>Sotthewes, Kai</au><au>Gauquelin, Nicolas</au><au>Riekehr, Lars</au><au>Jannis, Daen</au><au>van der Minne, Emma</au><au>Bu, Yibin</au><au>Verbeeck, Johan</au><au>Zandvliet, Harold J W</au><au>Koster, Gertjan</au><au>Rijnders, Guus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films</atitle><jtitle>ACS applied electronic materials</jtitle><addtitle>ACS Appl Electron Mater</addtitle><date>2022-12-27</date><risdate>2022</risdate><volume>4</volume><issue>12</issue><spage>6020</spage><epage>6028</epage><pages>6020-6028</pages><issn>2637-6113</issn><eissn>2637-6113</eissn><abstract>Vanadium dioxide (VO ) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO -metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO . The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO . The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.</abstract><cop>United States</cop><pmid>36588623</pmid><doi>10.1021/acsaelm.2c01176</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6809-139X</orcidid><orcidid>https://orcid.org/0000-0001-5478-7329</orcidid><orcidid>https://orcid.org/0000-0003-3133-2481</orcidid><orcidid>https://orcid.org/0000-0003-2073-6958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2637-6113
ispartof ACS applied electronic materials, 2022-12, Vol.4 (12), p.6020-6028
issn 2637-6113
2637-6113
language eng
recordid cdi_crossref_primary_10_1021_acsaelm_2c01176
source ACS Publications
title High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Strain-Induced%20Local%20Modification%20of%20the%20Electronic%20Properties%20of%20VO%202%20Thin%20Films&rft.jtitle=ACS%20applied%20electronic%20materials&rft.au=Birkh%C3%B6lzer,%20Yorick%20A&rft.date=2022-12-27&rft.volume=4&rft.issue=12&rft.spage=6020&rft.epage=6028&rft.pages=6020-6028&rft.issn=2637-6113&rft.eissn=2637-6113&rft_id=info:doi/10.1021/acsaelm.2c01176&rft_dat=%3Cpubmed_cross%3E36588623%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36588623&rfr_iscdi=true