Molecular n‑Doping of Large- and Small-Diameter Carbon Nanotube Field-Effect Transistors with Tetrakis(tetramethylguanidino)benzene

The guanidino-functionalized aromatic compound 1,2,4,5-tetrakis­(tetramethylguanidino)­benzene (ttmgb) has been shown to be an efficient n-dopant for field-effect transistors (FETs) with gold contacts and networks of semiconducting single-walled carbon nanotubes (SWCNTs) with small diameters and lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied electronic materials 2021-02, Vol.3 (2), p.804-812
Hauptverfasser: Gotthardt, Jan M, Schneider, Severin, Brohmann, Maximilian, Leingang, Simone, Sauter, Eric, Zharnikov, Michael, Himmel, Hans-Jörg, Zaumseil, Jana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 2
container_start_page 804
container_title ACS applied electronic materials
container_volume 3
creator Gotthardt, Jan M
Schneider, Severin
Brohmann, Maximilian
Leingang, Simone
Sauter, Eric
Zharnikov, Michael
Himmel, Hans-Jörg
Zaumseil, Jana
description The guanidino-functionalized aromatic compound 1,2,4,5-tetrakis­(tetramethylguanidino)­benzene (ttmgb) has been shown to be an efficient n-dopant for field-effect transistors (FETs) with gold contacts and networks of semiconducting single-walled carbon nanotubes (SWCNTs) with small diameters and large band gaps. Here, we investigate the broader applicability of ttmgb as a molecular n-dopant by fabricating bottom-contact/top-gate FETs with different air-stable, high work function metals as electrodes and with both small- and large-diameter polymer-sorted SWCNTs. Kelvin probe measurements indicate a reduction of the work functions of gold, palladium, and platinum by about 1 eV after ttmgb treatment and, correspondingly, gated four-point probe measurements show orders of magnitude lower contact resistances for electron injection into SWCNT networks. FETs based on networks of (6,5) SWCNTs with large band gaps as well as mixed semiconducting plasma torch SWCNTs with small band gaps can thus be transformed from ambipolar to purely n-type with no hole injection or increased off-currents by applying optimized ttmgb concentrations. Carrier concentration- and temperature-dependent measurements reveal that ttmgb treatment does not impact the electron transport and maximum mobilities in SWCNT networks at high carrier densities, but greatly improves the subthreshold slope of nanotube FETs by removing shallow electron trap states. This effect is found to be particularly pronounced for small-diameter nanotubes with large band gaps.
doi_str_mv 10.1021/acsaelm.0c00957
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaelm_0c00957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i35564341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-85d43606848cb79c87ecfd1f06396acbcf17251022a1448900cceb5f0904203f3</originalsourceid><addsrcrecordid>eNp1kL1OAzEQhC0EElFITesShC6xff8lyg8gBSgI9WnPZycOPjuyHaFQ0fAAvCJPwkVJQUO1I-1-o51B6JKSISWMjoB7ELodEk5ImeYnqMeyOI8ySuPTP_ocDbxfE9IhLGEp7aGvR6sF32pw2Px8fk_sRpklthLPwS1FhME0-KUFraOJglYE4fAYXG0NfgJjw7YWeKaEbqKplIIHvHBgvPLBOo_fVVjhhQgO3pS_CnvROax2erkFoxpl7HUtzIcw4gKdSdBeDI6zj15n08X4Ppo_3z2Mb-cRsDwPUZE2SZyRrEgKXuclL3LBZUMlyeIyA15zSfMuFWEMaJIUJSGcizqVpCQJI7GM-2h08OXOeu-ErDZOteB2FSXVvsjqWGR1LLIjbg5Et6jWdutM99-_17--c3lP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular n‑Doping of Large- and Small-Diameter Carbon Nanotube Field-Effect Transistors with Tetrakis(tetramethylguanidino)benzene</title><source>American Chemical Society Journals</source><creator>Gotthardt, Jan M ; Schneider, Severin ; Brohmann, Maximilian ; Leingang, Simone ; Sauter, Eric ; Zharnikov, Michael ; Himmel, Hans-Jörg ; Zaumseil, Jana</creator><creatorcontrib>Gotthardt, Jan M ; Schneider, Severin ; Brohmann, Maximilian ; Leingang, Simone ; Sauter, Eric ; Zharnikov, Michael ; Himmel, Hans-Jörg ; Zaumseil, Jana</creatorcontrib><description>The guanidino-functionalized aromatic compound 1,2,4,5-tetrakis­(tetramethylguanidino)­benzene (ttmgb) has been shown to be an efficient n-dopant for field-effect transistors (FETs) with gold contacts and networks of semiconducting single-walled carbon nanotubes (SWCNTs) with small diameters and large band gaps. Here, we investigate the broader applicability of ttmgb as a molecular n-dopant by fabricating bottom-contact/top-gate FETs with different air-stable, high work function metals as electrodes and with both small- and large-diameter polymer-sorted SWCNTs. Kelvin probe measurements indicate a reduction of the work functions of gold, palladium, and platinum by about 1 eV after ttmgb treatment and, correspondingly, gated four-point probe measurements show orders of magnitude lower contact resistances for electron injection into SWCNT networks. FETs based on networks of (6,5) SWCNTs with large band gaps as well as mixed semiconducting plasma torch SWCNTs with small band gaps can thus be transformed from ambipolar to purely n-type with no hole injection or increased off-currents by applying optimized ttmgb concentrations. Carrier concentration- and temperature-dependent measurements reveal that ttmgb treatment does not impact the electron transport and maximum mobilities in SWCNT networks at high carrier densities, but greatly improves the subthreshold slope of nanotube FETs by removing shallow electron trap states. This effect is found to be particularly pronounced for small-diameter nanotubes with large band gaps.</description><identifier>ISSN: 2637-6113</identifier><identifier>EISSN: 2637-6113</identifier><identifier>DOI: 10.1021/acsaelm.0c00957</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied electronic materials, 2021-02, Vol.3 (2), p.804-812</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-85d43606848cb79c87ecfd1f06396acbcf17251022a1448900cceb5f0904203f3</citedby><cites>FETCH-LOGICAL-a277t-85d43606848cb79c87ecfd1f06396acbcf17251022a1448900cceb5f0904203f3</cites><orcidid>0000-0002-3708-7571 ; 0000-0001-8111-3047 ; 0000-0002-2048-217X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaelm.0c00957$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaelm.0c00957$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gotthardt, Jan M</creatorcontrib><creatorcontrib>Schneider, Severin</creatorcontrib><creatorcontrib>Brohmann, Maximilian</creatorcontrib><creatorcontrib>Leingang, Simone</creatorcontrib><creatorcontrib>Sauter, Eric</creatorcontrib><creatorcontrib>Zharnikov, Michael</creatorcontrib><creatorcontrib>Himmel, Hans-Jörg</creatorcontrib><creatorcontrib>Zaumseil, Jana</creatorcontrib><title>Molecular n‑Doping of Large- and Small-Diameter Carbon Nanotube Field-Effect Transistors with Tetrakis(tetramethylguanidino)benzene</title><title>ACS applied electronic materials</title><addtitle>ACS Appl. Electron. Mater</addtitle><description>The guanidino-functionalized aromatic compound 1,2,4,5-tetrakis­(tetramethylguanidino)­benzene (ttmgb) has been shown to be an efficient n-dopant for field-effect transistors (FETs) with gold contacts and networks of semiconducting single-walled carbon nanotubes (SWCNTs) with small diameters and large band gaps. Here, we investigate the broader applicability of ttmgb as a molecular n-dopant by fabricating bottom-contact/top-gate FETs with different air-stable, high work function metals as electrodes and with both small- and large-diameter polymer-sorted SWCNTs. Kelvin probe measurements indicate a reduction of the work functions of gold, palladium, and platinum by about 1 eV after ttmgb treatment and, correspondingly, gated four-point probe measurements show orders of magnitude lower contact resistances for electron injection into SWCNT networks. FETs based on networks of (6,5) SWCNTs with large band gaps as well as mixed semiconducting plasma torch SWCNTs with small band gaps can thus be transformed from ambipolar to purely n-type with no hole injection or increased off-currents by applying optimized ttmgb concentrations. Carrier concentration- and temperature-dependent measurements reveal that ttmgb treatment does not impact the electron transport and maximum mobilities in SWCNT networks at high carrier densities, but greatly improves the subthreshold slope of nanotube FETs by removing shallow electron trap states. This effect is found to be particularly pronounced for small-diameter nanotubes with large band gaps.</description><issn>2637-6113</issn><issn>2637-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OAzEQhC0EElFITesShC6xff8lyg8gBSgI9WnPZycOPjuyHaFQ0fAAvCJPwkVJQUO1I-1-o51B6JKSISWMjoB7ELodEk5ImeYnqMeyOI8ySuPTP_ocDbxfE9IhLGEp7aGvR6sF32pw2Px8fk_sRpklthLPwS1FhME0-KUFraOJglYE4fAYXG0NfgJjw7YWeKaEbqKplIIHvHBgvPLBOo_fVVjhhQgO3pS_CnvROax2erkFoxpl7HUtzIcw4gKdSdBeDI6zj15n08X4Ppo_3z2Mb-cRsDwPUZE2SZyRrEgKXuclL3LBZUMlyeIyA15zSfMuFWEMaJIUJSGcizqVpCQJI7GM-2h08OXOeu-ErDZOteB2FSXVvsjqWGR1LLIjbg5Et6jWdutM99-_17--c3lP</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Gotthardt, Jan M</creator><creator>Schneider, Severin</creator><creator>Brohmann, Maximilian</creator><creator>Leingang, Simone</creator><creator>Sauter, Eric</creator><creator>Zharnikov, Michael</creator><creator>Himmel, Hans-Jörg</creator><creator>Zaumseil, Jana</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3708-7571</orcidid><orcidid>https://orcid.org/0000-0001-8111-3047</orcidid><orcidid>https://orcid.org/0000-0002-2048-217X</orcidid></search><sort><creationdate>20210223</creationdate><title>Molecular n‑Doping of Large- and Small-Diameter Carbon Nanotube Field-Effect Transistors with Tetrakis(tetramethylguanidino)benzene</title><author>Gotthardt, Jan M ; Schneider, Severin ; Brohmann, Maximilian ; Leingang, Simone ; Sauter, Eric ; Zharnikov, Michael ; Himmel, Hans-Jörg ; Zaumseil, Jana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-85d43606848cb79c87ecfd1f06396acbcf17251022a1448900cceb5f0904203f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotthardt, Jan M</creatorcontrib><creatorcontrib>Schneider, Severin</creatorcontrib><creatorcontrib>Brohmann, Maximilian</creatorcontrib><creatorcontrib>Leingang, Simone</creatorcontrib><creatorcontrib>Sauter, Eric</creatorcontrib><creatorcontrib>Zharnikov, Michael</creatorcontrib><creatorcontrib>Himmel, Hans-Jörg</creatorcontrib><creatorcontrib>Zaumseil, Jana</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotthardt, Jan M</au><au>Schneider, Severin</au><au>Brohmann, Maximilian</au><au>Leingang, Simone</au><au>Sauter, Eric</au><au>Zharnikov, Michael</au><au>Himmel, Hans-Jörg</au><au>Zaumseil, Jana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular n‑Doping of Large- and Small-Diameter Carbon Nanotube Field-Effect Transistors with Tetrakis(tetramethylguanidino)benzene</atitle><jtitle>ACS applied electronic materials</jtitle><addtitle>ACS Appl. Electron. Mater</addtitle><date>2021-02-23</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><spage>804</spage><epage>812</epage><pages>804-812</pages><issn>2637-6113</issn><eissn>2637-6113</eissn><abstract>The guanidino-functionalized aromatic compound 1,2,4,5-tetrakis­(tetramethylguanidino)­benzene (ttmgb) has been shown to be an efficient n-dopant for field-effect transistors (FETs) with gold contacts and networks of semiconducting single-walled carbon nanotubes (SWCNTs) with small diameters and large band gaps. Here, we investigate the broader applicability of ttmgb as a molecular n-dopant by fabricating bottom-contact/top-gate FETs with different air-stable, high work function metals as electrodes and with both small- and large-diameter polymer-sorted SWCNTs. Kelvin probe measurements indicate a reduction of the work functions of gold, palladium, and platinum by about 1 eV after ttmgb treatment and, correspondingly, gated four-point probe measurements show orders of magnitude lower contact resistances for electron injection into SWCNT networks. FETs based on networks of (6,5) SWCNTs with large band gaps as well as mixed semiconducting plasma torch SWCNTs with small band gaps can thus be transformed from ambipolar to purely n-type with no hole injection or increased off-currents by applying optimized ttmgb concentrations. Carrier concentration- and temperature-dependent measurements reveal that ttmgb treatment does not impact the electron transport and maximum mobilities in SWCNT networks at high carrier densities, but greatly improves the subthreshold slope of nanotube FETs by removing shallow electron trap states. This effect is found to be particularly pronounced for small-diameter nanotubes with large band gaps.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaelm.0c00957</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3708-7571</orcidid><orcidid>https://orcid.org/0000-0001-8111-3047</orcidid><orcidid>https://orcid.org/0000-0002-2048-217X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2637-6113
ispartof ACS applied electronic materials, 2021-02, Vol.3 (2), p.804-812
issn 2637-6113
2637-6113
language eng
recordid cdi_crossref_primary_10_1021_acsaelm_0c00957
source American Chemical Society Journals
title Molecular n‑Doping of Large- and Small-Diameter Carbon Nanotube Field-Effect Transistors with Tetrakis(tetramethylguanidino)benzene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20n%E2%80%91Doping%20of%20Large-%20and%20Small-Diameter%20Carbon%20Nanotube%20Field-Effect%20Transistors%20with%20Tetrakis(tetramethylguanidino)benzene&rft.jtitle=ACS%20applied%20electronic%20materials&rft.au=Gotthardt,%20Jan%20M&rft.date=2021-02-23&rft.volume=3&rft.issue=2&rft.spage=804&rft.epage=812&rft.pages=804-812&rft.issn=2637-6113&rft.eissn=2637-6113&rft_id=info:doi/10.1021/acsaelm.0c00957&rft_dat=%3Cacs_cross%3Ei35564341%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true