An Albumin-Based Therapeutic Nanosystem for Photosensitizer/Protein Co-Delivery to Realize Synergistic Cancer Therapy

Oxygen-dependent photodynamic therapy (PDT) is hindered by the limited availability of endogenous oxygen in solid tumors and low tumor accumulation of photosensitizers. Herein, we developed a biocompatible cancer-targeted therapeutic nanosystem based on cRGD conjugated bovine serum albumin (CBSA) co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2021-06, Vol.4 (6), p.4946-4952
Hauptverfasser: Ai, Shu-Lun, Wang, Cai-Xia, Peng, Yan, Tu, Yi, Lei, Jin-Ju, Xu, Chang, Ren, Xiao-He, Cheng, Si-Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxygen-dependent photodynamic therapy (PDT) is hindered by the limited availability of endogenous oxygen in solid tumors and low tumor accumulation of photosensitizers. Herein, we developed a biocompatible cancer-targeted therapeutic nanosystem based on cRGD conjugated bovine serum albumin (CBSA) co-loaded with a photosensitizer (chlorin e6, Ce6) and a therapeutic protein (cytochrome c, Cytc) for synergistic photodynamic and protein therapy. The nanosystem (Ce6/Cytc@CBSA) can target αVβ3 integrin overexpressed cancer cells to improve tumor accumulation due to incorporation of cRGD. In the intracellular environment, Ce6 is released to produce toxic singlet oxygen upon near-infrared irradiation. At the same time, the therapeutic protein, Cytc, can induce programmed cell death by activating the downstream caspase pathway. Most importantly, Cytc with the catalase-like activity accelerates O2 generation by decomposing excess H2O2 in cancer cells, thereby relieving the PDT-induced hypoxia to enhance therapeutic efficacy. Both in vitro and in vivo studies reveal the significantly improved antitumor effects of the combined photodynamic/protein therapy, indicating that Ce6/Cytc@CBSA shows great potential in synergetic cancer treatments.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.1c00233