Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient
Herein, a population balance model (PBM) for a combined cooling and antisolvent crystallization process for an active pharmaceutical ingredient (API) has been developed and utilized to predict the product particle size distribution (PSD) for two sets of four ∼35 kg scale plant batches, with good agr...
Gespeichert in:
Veröffentlicht in: | Organic process research & development 2019-12, Vol.23 (12), p.2666-2677 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2677 |
---|---|
container_issue | 12 |
container_start_page | 2666 |
container_title | Organic process research & development |
container_volume | 23 |
creator | Rosenbaum, Tamar Tan, Li Dummeldinger, Michael Mitchell, Niall Engstrom, Joshua |
description | Herein, a population balance model (PBM) for a combined cooling and antisolvent crystallization process for an active pharmaceutical ingredient (API) has been developed and utilized to predict the product particle size distribution (PSD) for two sets of four ∼35 kg scale plant batches, with good agreement to data. The PBM was constructed from lab-scale (∼10 g) crystallization runs using seed and product PSD measurements along with concentration measurements of the API during batch desupersaturation experiments. The PBM was then used to predict the product PSD for two sets of four plant batches, run using different reactors equipped with different agitator types operated at different agitation rates. Analysis of the crystallization kinetics reveals that secondary nucleation due to attrition has a strong influence on the PSD in the crystallization process of the API, and thus mixing conditions (agitator type, agitator speed, pumping, and power numbers) have a strong effect on PSD. The model provides a more robust particle size control strategy than design of experiment (DOE) studies alone by incorporating fundamental crystallization kinetics, with data from a small set of lab experiments in lieu of extensive DOE studies. This first-principle-based approach was useful for enhancing the robustness of the technical transfer process by accounting for impacts on product PSD stemming from process scale-up and parameter changes. |
doi_str_mv | 10.1021/acs.oprd.9b00348 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_oprd_9b00348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g63603274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-8ee2f5050143e8ff8f48cedd7937124ea7ff601456e401542e879adf2649be683</originalsourceid><addsrcrecordid>eNp1kN1OAjEQhTdGExG997IP4GK7v-US8Y8E4yZA4t2m251iSWk3bSGBZ_Ih7YK33sxMcuZ8MzlRdE_wiOCEPDLuRqaz7WjcYJxm9CIakDzBcU6Lr8swY5rGBSnwdXTj3AZjnBckGUQ_lel2inlpNHpiimkO6MO0oKReo6VBlYVWco8qZr3kCtBCHgE9S-etbHYn264LZcGZgnjVISMQQ1OzbaSGFk20l86oPWiPmG6DYE7kqT04z5SSx_Pp3qXRhHu5B1R9M7tlHAI-UNFMr_snAuI2uhJMObj768No9fqynL7H88-32XQyj1lCsY8pQCJynGOSpUCFoCKjHNq2HKclSTJgpRBFEPMCMkzyLAFajlkrkiIbN1DQdBjhM5db45wFUXdWbpk91ATXfdp1SLvu067_0g6Wh7OlVzZmZ3V48P_1X2rYh4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient</title><source>ACS Publications</source><creator>Rosenbaum, Tamar ; Tan, Li ; Dummeldinger, Michael ; Mitchell, Niall ; Engstrom, Joshua</creator><creatorcontrib>Rosenbaum, Tamar ; Tan, Li ; Dummeldinger, Michael ; Mitchell, Niall ; Engstrom, Joshua</creatorcontrib><description>Herein, a population balance model (PBM) for a combined cooling and antisolvent crystallization process for an active pharmaceutical ingredient (API) has been developed and utilized to predict the product particle size distribution (PSD) for two sets of four ∼35 kg scale plant batches, with good agreement to data. The PBM was constructed from lab-scale (∼10 g) crystallization runs using seed and product PSD measurements along with concentration measurements of the API during batch desupersaturation experiments. The PBM was then used to predict the product PSD for two sets of four plant batches, run using different reactors equipped with different agitator types operated at different agitation rates. Analysis of the crystallization kinetics reveals that secondary nucleation due to attrition has a strong influence on the PSD in the crystallization process of the API, and thus mixing conditions (agitator type, agitator speed, pumping, and power numbers) have a strong effect on PSD. The model provides a more robust particle size control strategy than design of experiment (DOE) studies alone by incorporating fundamental crystallization kinetics, with data from a small set of lab experiments in lieu of extensive DOE studies. This first-principle-based approach was useful for enhancing the robustness of the technical transfer process by accounting for impacts on product PSD stemming from process scale-up and parameter changes.</description><identifier>ISSN: 1083-6160</identifier><identifier>EISSN: 1520-586X</identifier><identifier>DOI: 10.1021/acs.oprd.9b00348</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Organic process research & development, 2019-12, Vol.23 (12), p.2666-2677</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-8ee2f5050143e8ff8f48cedd7937124ea7ff601456e401542e879adf2649be683</citedby><cites>FETCH-LOGICAL-a280t-8ee2f5050143e8ff8f48cedd7937124ea7ff601456e401542e879adf2649be683</cites><orcidid>0000-0002-4496-1191 ; 0000-0003-1521-8865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00348$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.oprd.9b00348$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Rosenbaum, Tamar</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Dummeldinger, Michael</creatorcontrib><creatorcontrib>Mitchell, Niall</creatorcontrib><creatorcontrib>Engstrom, Joshua</creatorcontrib><title>Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient</title><title>Organic process research & development</title><addtitle>Org. Process Res. Dev</addtitle><description>Herein, a population balance model (PBM) for a combined cooling and antisolvent crystallization process for an active pharmaceutical ingredient (API) has been developed and utilized to predict the product particle size distribution (PSD) for two sets of four ∼35 kg scale plant batches, with good agreement to data. The PBM was constructed from lab-scale (∼10 g) crystallization runs using seed and product PSD measurements along with concentration measurements of the API during batch desupersaturation experiments. The PBM was then used to predict the product PSD for two sets of four plant batches, run using different reactors equipped with different agitator types operated at different agitation rates. Analysis of the crystallization kinetics reveals that secondary nucleation due to attrition has a strong influence on the PSD in the crystallization process of the API, and thus mixing conditions (agitator type, agitator speed, pumping, and power numbers) have a strong effect on PSD. The model provides a more robust particle size control strategy than design of experiment (DOE) studies alone by incorporating fundamental crystallization kinetics, with data from a small set of lab experiments in lieu of extensive DOE studies. This first-principle-based approach was useful for enhancing the robustness of the technical transfer process by accounting for impacts on product PSD stemming from process scale-up and parameter changes.</description><issn>1083-6160</issn><issn>1520-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kN1OAjEQhTdGExG997IP4GK7v-US8Y8E4yZA4t2m251iSWk3bSGBZ_Ih7YK33sxMcuZ8MzlRdE_wiOCEPDLuRqaz7WjcYJxm9CIakDzBcU6Lr8swY5rGBSnwdXTj3AZjnBckGUQ_lel2inlpNHpiimkO6MO0oKReo6VBlYVWco8qZr3kCtBCHgE9S-etbHYn264LZcGZgnjVISMQQ1OzbaSGFk20l86oPWiPmG6DYE7kqT04z5SSx_Pp3qXRhHu5B1R9M7tlHAI-UNFMr_snAuI2uhJMObj768No9fqynL7H88-32XQyj1lCsY8pQCJynGOSpUCFoCKjHNq2HKclSTJgpRBFEPMCMkzyLAFajlkrkiIbN1DQdBjhM5db45wFUXdWbpk91ATXfdp1SLvu067_0g6Wh7OlVzZmZ3V48P_1X2rYh4o</recordid><startdate>20191220</startdate><enddate>20191220</enddate><creator>Rosenbaum, Tamar</creator><creator>Tan, Li</creator><creator>Dummeldinger, Michael</creator><creator>Mitchell, Niall</creator><creator>Engstrom, Joshua</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4496-1191</orcidid><orcidid>https://orcid.org/0000-0003-1521-8865</orcidid></search><sort><creationdate>20191220</creationdate><title>Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient</title><author>Rosenbaum, Tamar ; Tan, Li ; Dummeldinger, Michael ; Mitchell, Niall ; Engstrom, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-8ee2f5050143e8ff8f48cedd7937124ea7ff601456e401542e879adf2649be683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenbaum, Tamar</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Dummeldinger, Michael</creatorcontrib><creatorcontrib>Mitchell, Niall</creatorcontrib><creatorcontrib>Engstrom, Joshua</creatorcontrib><collection>CrossRef</collection><jtitle>Organic process research & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenbaum, Tamar</au><au>Tan, Li</au><au>Dummeldinger, Michael</au><au>Mitchell, Niall</au><au>Engstrom, Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient</atitle><jtitle>Organic process research & development</jtitle><addtitle>Org. Process Res. Dev</addtitle><date>2019-12-20</date><risdate>2019</risdate><volume>23</volume><issue>12</issue><spage>2666</spage><epage>2677</epage><pages>2666-2677</pages><issn>1083-6160</issn><eissn>1520-586X</eissn><abstract>Herein, a population balance model (PBM) for a combined cooling and antisolvent crystallization process for an active pharmaceutical ingredient (API) has been developed and utilized to predict the product particle size distribution (PSD) for two sets of four ∼35 kg scale plant batches, with good agreement to data. The PBM was constructed from lab-scale (∼10 g) crystallization runs using seed and product PSD measurements along with concentration measurements of the API during batch desupersaturation experiments. The PBM was then used to predict the product PSD for two sets of four plant batches, run using different reactors equipped with different agitator types operated at different agitation rates. Analysis of the crystallization kinetics reveals that secondary nucleation due to attrition has a strong influence on the PSD in the crystallization process of the API, and thus mixing conditions (agitator type, agitator speed, pumping, and power numbers) have a strong effect on PSD. The model provides a more robust particle size control strategy than design of experiment (DOE) studies alone by incorporating fundamental crystallization kinetics, with data from a small set of lab experiments in lieu of extensive DOE studies. This first-principle-based approach was useful for enhancing the robustness of the technical transfer process by accounting for impacts on product PSD stemming from process scale-up and parameter changes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.oprd.9b00348</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4496-1191</orcidid><orcidid>https://orcid.org/0000-0003-1521-8865</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-6160 |
ispartof | Organic process research & development, 2019-12, Vol.23 (12), p.2666-2677 |
issn | 1083-6160 1520-586X |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_oprd_9b00348 |
source | ACS Publications |
title | Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Balance%20Modeling%20To%20Predict%20Particle%20Size%20Distribution%20upon%20Scale-Up%20of%20a%20Combined%20Antisolvent%20and%20Cooling%20Crystallization%20of%20an%20Active%20Pharmaceutical%20Ingredient&rft.jtitle=Organic%20process%20research%20&%20development&rft.au=Rosenbaum,%20Tamar&rft.date=2019-12-20&rft.volume=23&rft.issue=12&rft.spage=2666&rft.epage=2677&rft.pages=2666-2677&rft.issn=1083-6160&rft.eissn=1520-586X&rft_id=info:doi/10.1021/acs.oprd.9b00348&rft_dat=%3Cacs_cross%3Eg63603274%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |