Development of Enzymatic Variants for the Synthesis of Bioresorbable Polyesters

Enzymatic synthesis of polymeric materials is a powerful approach to make these processes greener, more economical, and safer for scale-up. Herein, we characterized new variants of the hyperthermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus with quantum mechanics/molecular mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic process research & development 2022-08, Vol.26 (8), p.2351-2363
Hauptverfasser: Almeida, Beatriz C., Figueiredo, Pedro R., Dourado, Daniel F.A.R., Paul, Stephanie, Sousa, Andreia F., Silvestre, Armando J.D., Quinn, Derek J., Moody, Thomas S., Carvalho, Alexandra T.P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2363
container_issue 8
container_start_page 2351
container_title Organic process research & development
container_volume 26
creator Almeida, Beatriz C.
Figueiredo, Pedro R.
Dourado, Daniel F.A.R.
Paul, Stephanie
Sousa, Andreia F.
Silvestre, Armando J.D.
Quinn, Derek J.
Moody, Thomas S.
Carvalho, Alexandra T.P.
description Enzymatic synthesis of polymeric materials is a powerful approach to make these processes greener, more economical, and safer for scale-up. Herein, we characterized new variants of the hyperthermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus with quantum mechanics/molecular mechanics molecular dynamics simulations. The designed variants were expressed and tested for the synthesis of poly­(ε-caprolactone) and triblock poly­(ε-caprolactone)–poly­(ethylene glycol), two important biomaterials. The reactant complexes of the best variants formed stronger hydrogen bonds with the nucleophilic oxygen and the subsequent tetrahedral intermediates formed stronger hydrogen bonds with the leaving lactone oxygen, reflecting the best active site preorganization for stabilization of the two consecutive transition states that involve the same active site machinery. Our findings set the underpinning ground to redesign other enzymes for polyesterification reactions.
doi_str_mv 10.1021/acs.oprd.1c00480
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_oprd_1c00480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i38801839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a306t-d89a514f9b84b4c50e35025ff06e8b6dcb2634b288813190ab6e7f00ec6269a23</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7uXeYH2HqTNjFd6jg-YGAEH7grSXqDHdqmJFWov96Wma2rc-Gcczl8hFwySBlwdq1tTH0fqpRZgFzBEVkwwSERSn4eTzeoLJFMwik5i3EHAEIyviDbe_zBxvctdgP1jq6737HVQ23phw617oZInQ90-EL6OnaTxDrOubvaB4w-GG0apC--GTEOGOI5OXG6iXhx0CV5f1i_rZ6SzfbxeXW7SXQGckgqVWjBclcYlZvcCsBMABfOgURlZGUNl1luuFKKZawAbSTeOAC0kstC82xJYP_XBh9jQFf2oW51GEsG5QyknICUM5DyAGSqXO0rs7Pz36GbBv4f_wPZvWWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of Enzymatic Variants for the Synthesis of Bioresorbable Polyesters</title><source>ACS Publications</source><creator>Almeida, Beatriz C. ; Figueiredo, Pedro R. ; Dourado, Daniel F.A.R. ; Paul, Stephanie ; Sousa, Andreia F. ; Silvestre, Armando J.D. ; Quinn, Derek J. ; Moody, Thomas S. ; Carvalho, Alexandra T.P.</creator><creatorcontrib>Almeida, Beatriz C. ; Figueiredo, Pedro R. ; Dourado, Daniel F.A.R. ; Paul, Stephanie ; Sousa, Andreia F. ; Silvestre, Armando J.D. ; Quinn, Derek J. ; Moody, Thomas S. ; Carvalho, Alexandra T.P.</creatorcontrib><description>Enzymatic synthesis of polymeric materials is a powerful approach to make these processes greener, more economical, and safer for scale-up. Herein, we characterized new variants of the hyperthermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus with quantum mechanics/molecular mechanics molecular dynamics simulations. The designed variants were expressed and tested for the synthesis of poly­(ε-caprolactone) and triblock poly­(ε-caprolactone)–poly­(ethylene glycol), two important biomaterials. The reactant complexes of the best variants formed stronger hydrogen bonds with the nucleophilic oxygen and the subsequent tetrahedral intermediates formed stronger hydrogen bonds with the leaving lactone oxygen, reflecting the best active site preorganization for stabilization of the two consecutive transition states that involve the same active site machinery. Our findings set the underpinning ground to redesign other enzymes for polyesterification reactions.</description><identifier>ISSN: 1083-6160</identifier><identifier>EISSN: 1520-586X</identifier><identifier>DOI: 10.1021/acs.oprd.1c00480</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Organic process research &amp; development, 2022-08, Vol.26 (8), p.2351-2363</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a306t-d89a514f9b84b4c50e35025ff06e8b6dcb2634b288813190ab6e7f00ec6269a23</citedby><cites>FETCH-LOGICAL-a306t-d89a514f9b84b4c50e35025ff06e8b6dcb2634b288813190ab6e7f00ec6269a23</cites><orcidid>0000-0002-8266-0269 ; 0000-0002-1278-803X ; 0000-0003-3044-3016 ; 0000-0003-2827-5527 ; 0000-0002-1243-0265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.oprd.1c00480$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.oprd.1c00480$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Almeida, Beatriz C.</creatorcontrib><creatorcontrib>Figueiredo, Pedro R.</creatorcontrib><creatorcontrib>Dourado, Daniel F.A.R.</creatorcontrib><creatorcontrib>Paul, Stephanie</creatorcontrib><creatorcontrib>Sousa, Andreia F.</creatorcontrib><creatorcontrib>Silvestre, Armando J.D.</creatorcontrib><creatorcontrib>Quinn, Derek J.</creatorcontrib><creatorcontrib>Moody, Thomas S.</creatorcontrib><creatorcontrib>Carvalho, Alexandra T.P.</creatorcontrib><title>Development of Enzymatic Variants for the Synthesis of Bioresorbable Polyesters</title><title>Organic process research &amp; development</title><addtitle>Org. Process Res. Dev</addtitle><description>Enzymatic synthesis of polymeric materials is a powerful approach to make these processes greener, more economical, and safer for scale-up. Herein, we characterized new variants of the hyperthermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus with quantum mechanics/molecular mechanics molecular dynamics simulations. The designed variants were expressed and tested for the synthesis of poly­(ε-caprolactone) and triblock poly­(ε-caprolactone)–poly­(ethylene glycol), two important biomaterials. The reactant complexes of the best variants formed stronger hydrogen bonds with the nucleophilic oxygen and the subsequent tetrahedral intermediates formed stronger hydrogen bonds with the leaving lactone oxygen, reflecting the best active site preorganization for stabilization of the two consecutive transition states that involve the same active site machinery. Our findings set the underpinning ground to redesign other enzymes for polyesterification reactions.</description><issn>1083-6160</issn><issn>1520-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7uXeYH2HqTNjFd6jg-YGAEH7grSXqDHdqmJFWov96Wma2rc-Gcczl8hFwySBlwdq1tTH0fqpRZgFzBEVkwwSERSn4eTzeoLJFMwik5i3EHAEIyviDbe_zBxvctdgP1jq6737HVQ23phw617oZInQ90-EL6OnaTxDrOubvaB4w-GG0apC--GTEOGOI5OXG6iXhx0CV5f1i_rZ6SzfbxeXW7SXQGckgqVWjBclcYlZvcCsBMABfOgURlZGUNl1luuFKKZawAbSTeOAC0kstC82xJYP_XBh9jQFf2oW51GEsG5QyknICUM5DyAGSqXO0rs7Pz36GbBv4f_wPZvWWA</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>Almeida, Beatriz C.</creator><creator>Figueiredo, Pedro R.</creator><creator>Dourado, Daniel F.A.R.</creator><creator>Paul, Stephanie</creator><creator>Sousa, Andreia F.</creator><creator>Silvestre, Armando J.D.</creator><creator>Quinn, Derek J.</creator><creator>Moody, Thomas S.</creator><creator>Carvalho, Alexandra T.P.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8266-0269</orcidid><orcidid>https://orcid.org/0000-0002-1278-803X</orcidid><orcidid>https://orcid.org/0000-0003-3044-3016</orcidid><orcidid>https://orcid.org/0000-0003-2827-5527</orcidid><orcidid>https://orcid.org/0000-0002-1243-0265</orcidid></search><sort><creationdate>20220819</creationdate><title>Development of Enzymatic Variants for the Synthesis of Bioresorbable Polyesters</title><author>Almeida, Beatriz C. ; Figueiredo, Pedro R. ; Dourado, Daniel F.A.R. ; Paul, Stephanie ; Sousa, Andreia F. ; Silvestre, Armando J.D. ; Quinn, Derek J. ; Moody, Thomas S. ; Carvalho, Alexandra T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a306t-d89a514f9b84b4c50e35025ff06e8b6dcb2634b288813190ab6e7f00ec6269a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Beatriz C.</creatorcontrib><creatorcontrib>Figueiredo, Pedro R.</creatorcontrib><creatorcontrib>Dourado, Daniel F.A.R.</creatorcontrib><creatorcontrib>Paul, Stephanie</creatorcontrib><creatorcontrib>Sousa, Andreia F.</creatorcontrib><creatorcontrib>Silvestre, Armando J.D.</creatorcontrib><creatorcontrib>Quinn, Derek J.</creatorcontrib><creatorcontrib>Moody, Thomas S.</creatorcontrib><creatorcontrib>Carvalho, Alexandra T.P.</creatorcontrib><collection>CrossRef</collection><jtitle>Organic process research &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Beatriz C.</au><au>Figueiredo, Pedro R.</au><au>Dourado, Daniel F.A.R.</au><au>Paul, Stephanie</au><au>Sousa, Andreia F.</au><au>Silvestre, Armando J.D.</au><au>Quinn, Derek J.</au><au>Moody, Thomas S.</au><au>Carvalho, Alexandra T.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Enzymatic Variants for the Synthesis of Bioresorbable Polyesters</atitle><jtitle>Organic process research &amp; development</jtitle><addtitle>Org. Process Res. Dev</addtitle><date>2022-08-19</date><risdate>2022</risdate><volume>26</volume><issue>8</issue><spage>2351</spage><epage>2363</epage><pages>2351-2363</pages><issn>1083-6160</issn><eissn>1520-586X</eissn><abstract>Enzymatic synthesis of polymeric materials is a powerful approach to make these processes greener, more economical, and safer for scale-up. Herein, we characterized new variants of the hyperthermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus with quantum mechanics/molecular mechanics molecular dynamics simulations. The designed variants were expressed and tested for the synthesis of poly­(ε-caprolactone) and triblock poly­(ε-caprolactone)–poly­(ethylene glycol), two important biomaterials. The reactant complexes of the best variants formed stronger hydrogen bonds with the nucleophilic oxygen and the subsequent tetrahedral intermediates formed stronger hydrogen bonds with the leaving lactone oxygen, reflecting the best active site preorganization for stabilization of the two consecutive transition states that involve the same active site machinery. Our findings set the underpinning ground to redesign other enzymes for polyesterification reactions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.oprd.1c00480</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8266-0269</orcidid><orcidid>https://orcid.org/0000-0002-1278-803X</orcidid><orcidid>https://orcid.org/0000-0003-3044-3016</orcidid><orcidid>https://orcid.org/0000-0003-2827-5527</orcidid><orcidid>https://orcid.org/0000-0002-1243-0265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-6160
ispartof Organic process research & development, 2022-08, Vol.26 (8), p.2351-2363
issn 1083-6160
1520-586X
language eng
recordid cdi_crossref_primary_10_1021_acs_oprd_1c00480
source ACS Publications
title Development of Enzymatic Variants for the Synthesis of Bioresorbable Polyesters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Enzymatic%20Variants%20for%20the%20Synthesis%20of%20Bioresorbable%20Polyesters&rft.jtitle=Organic%20process%20research%20&%20development&rft.au=Almeida,%20Beatriz%20C.&rft.date=2022-08-19&rft.volume=26&rft.issue=8&rft.spage=2351&rft.epage=2363&rft.pages=2351-2363&rft.issn=1083-6160&rft.eissn=1520-586X&rft_id=info:doi/10.1021/acs.oprd.1c00480&rft_dat=%3Cacs_cross%3Ei38801839%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true