Development of a Commercial Manufacturing Route to 2‑Fluoroadenine, The Key Unnatural Nucleobase of Islatravir

We report the practical synthesis of a key fragment of islatravir (MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor (NRTTI) currently under investigation for treatment and pre-exposure prophylaxis (PrEP) against HIV infection. The fragment, the unnatural nucleobase 2-fluoro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic process research & development 2021-03, Vol.25 (3), p.395-404
Hauptverfasser: Hong, Cynthia M, Xu, Yingju, Chung, John Y. L, Schultz, Danielle M, Weisel, Mark, Varsolona, Richard J, Zhong, Yong-Li, Purohit, Akasha K, He, Cyndi Q, Gauthier, Donald R, Humphrey, Guy R, Maloney, Kevin M, Lévesque, François, Wang, Zhixun, Whittaker, Aaron M, Sirota, Eric, McMullen, Jonathan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 3
container_start_page 395
container_title Organic process research & development
container_volume 25
creator Hong, Cynthia M
Xu, Yingju
Chung, John Y. L
Schultz, Danielle M
Weisel, Mark
Varsolona, Richard J
Zhong, Yong-Li
Purohit, Akasha K
He, Cyndi Q
Gauthier, Donald R
Humphrey, Guy R
Maloney, Kevin M
Lévesque, François
Wang, Zhixun
Whittaker, Aaron M
Sirota, Eric
McMullen, Jonathan P
description We report the practical synthesis of a key fragment of islatravir (MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor (NRTTI) currently under investigation for treatment and pre-exposure prophylaxis (PrEP) against HIV infection. The fragment, the unnatural nucleobase 2-fluoroadenine, is incorporated into MK-8591 via a biocatalytic aldol-glycosylation cascade, which imposes stringent requirements for its synthesis and isolation. Presented herein is the development work leading to a practical, scalable route from guanine, featuring a dual fluorination approach to a novel 9-THP-2,6-difluoropurine intermediate that enables a mild, highly selective, direct amination. This one-pot fluorination/amination sequence utilizes a direct isolation to deliver high purity 9-THP-2-fluoroadenine, which features ideal properties with respect to reactivity, solubility, and crystallinity. An acid-catalyzed liberation of 2-fluoroadenine in aqueous buffer delivers the appropriate purity profile to facilitate the enzymatic cascade to access MK-8591.
doi_str_mv 10.1021/acs.oprd.0c00304
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_oprd_0c00304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d222975075</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-1fa541af3b1c0efad38eea3938b65f183def11964c95ce7ac725df80f07bdc6a3</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYso-Lt3mb12vGnaTGcp1VHxD0TBXblNb7TSSYYkVdz5Cr6iT2LKiDvB1T2L8x0uX5Lsc5hwyPgRKj-xS9dOQAEIyNeSLV5kkBalfFyPGUqRSi5hM9n2_gUACsmzrWR5Qq_U2-WCTGBWM2SVXSzIqQ57do1m0KjC4DrzxO7sEIgFy7Kvj895P1hnsSXTGTpk98_ELumdPRiDsR7Zm0H1ZBv0NM5e-B6Dw9fO7SYbGntPez93J3mYn95X5-nV7dlFdXyVoshlSLnGIueoRcMVkMZWlEQoZqJsZKF5KVrSnM9krmaFoimqaVa0ugQN06ZVEsVOAqtd5az3jnS9dN0C3XvNoR6N1dFYPRqrf4xFpFwhb9RY7VVHRtEvFpVJwfOcT2GMVRcwdNZUdjAhogf_R2P7cNUeX3ixgzPRxN9_fQPXT5PC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a Commercial Manufacturing Route to 2‑Fluoroadenine, The Key Unnatural Nucleobase of Islatravir</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society Journals</source><creator>Hong, Cynthia M ; Xu, Yingju ; Chung, John Y. L ; Schultz, Danielle M ; Weisel, Mark ; Varsolona, Richard J ; Zhong, Yong-Li ; Purohit, Akasha K ; He, Cyndi Q ; Gauthier, Donald R ; Humphrey, Guy R ; Maloney, Kevin M ; Lévesque, François ; Wang, Zhixun ; Whittaker, Aaron M ; Sirota, Eric ; McMullen, Jonathan P</creator><creatorcontrib>Hong, Cynthia M ; Xu, Yingju ; Chung, John Y. L ; Schultz, Danielle M ; Weisel, Mark ; Varsolona, Richard J ; Zhong, Yong-Li ; Purohit, Akasha K ; He, Cyndi Q ; Gauthier, Donald R ; Humphrey, Guy R ; Maloney, Kevin M ; Lévesque, François ; Wang, Zhixun ; Whittaker, Aaron M ; Sirota, Eric ; McMullen, Jonathan P</creatorcontrib><description>We report the practical synthesis of a key fragment of islatravir (MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor (NRTTI) currently under investigation for treatment and pre-exposure prophylaxis (PrEP) against HIV infection. The fragment, the unnatural nucleobase 2-fluoroadenine, is incorporated into MK-8591 via a biocatalytic aldol-glycosylation cascade, which imposes stringent requirements for its synthesis and isolation. Presented herein is the development work leading to a practical, scalable route from guanine, featuring a dual fluorination approach to a novel 9-THP-2,6-difluoropurine intermediate that enables a mild, highly selective, direct amination. This one-pot fluorination/amination sequence utilizes a direct isolation to deliver high purity 9-THP-2-fluoroadenine, which features ideal properties with respect to reactivity, solubility, and crystallinity. An acid-catalyzed liberation of 2-fluoroadenine in aqueous buffer delivers the appropriate purity profile to facilitate the enzymatic cascade to access MK-8591.</description><identifier>ISSN: 1083-6160</identifier><identifier>EISSN: 1520-586X</identifier><identifier>DOI: 10.1021/acs.oprd.0c00304</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Applied ; Chemistry, Organic ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Organic process research &amp; development, 2021-03, Vol.25 (3), p.395-404</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000631441700006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a346t-1fa541af3b1c0efad38eea3938b65f183def11964c95ce7ac725df80f07bdc6a3</citedby><cites>FETCH-LOGICAL-a346t-1fa541af3b1c0efad38eea3938b65f183def11964c95ce7ac725df80f07bdc6a3</cites><orcidid>0000-0001-5969-2396 ; 0000-0001-9529-4993 ; 0000-0003-1422-5422 ; 0000-0001-9701-3630 ; 0000-0002-2563-219X ; 0000-0002-4811-2218 ; 0000-0001-8634-1567 ; 0000-0003-2825-0530 ; 0000-0001-6094-5549 ; 0000-0002-8348-5490 ; 0000-0002-3143-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.oprd.0c00304$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.oprd.0c00304$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Hong, Cynthia M</creatorcontrib><creatorcontrib>Xu, Yingju</creatorcontrib><creatorcontrib>Chung, John Y. L</creatorcontrib><creatorcontrib>Schultz, Danielle M</creatorcontrib><creatorcontrib>Weisel, Mark</creatorcontrib><creatorcontrib>Varsolona, Richard J</creatorcontrib><creatorcontrib>Zhong, Yong-Li</creatorcontrib><creatorcontrib>Purohit, Akasha K</creatorcontrib><creatorcontrib>He, Cyndi Q</creatorcontrib><creatorcontrib>Gauthier, Donald R</creatorcontrib><creatorcontrib>Humphrey, Guy R</creatorcontrib><creatorcontrib>Maloney, Kevin M</creatorcontrib><creatorcontrib>Lévesque, François</creatorcontrib><creatorcontrib>Wang, Zhixun</creatorcontrib><creatorcontrib>Whittaker, Aaron M</creatorcontrib><creatorcontrib>Sirota, Eric</creatorcontrib><creatorcontrib>McMullen, Jonathan P</creatorcontrib><title>Development of a Commercial Manufacturing Route to 2‑Fluoroadenine, The Key Unnatural Nucleobase of Islatravir</title><title>Organic process research &amp; development</title><addtitle>ORG PROCESS RES DEV</addtitle><addtitle>Org. Process Res. Dev</addtitle><description>We report the practical synthesis of a key fragment of islatravir (MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor (NRTTI) currently under investigation for treatment and pre-exposure prophylaxis (PrEP) against HIV infection. The fragment, the unnatural nucleobase 2-fluoroadenine, is incorporated into MK-8591 via a biocatalytic aldol-glycosylation cascade, which imposes stringent requirements for its synthesis and isolation. Presented herein is the development work leading to a practical, scalable route from guanine, featuring a dual fluorination approach to a novel 9-THP-2,6-difluoropurine intermediate that enables a mild, highly selective, direct amination. This one-pot fluorination/amination sequence utilizes a direct isolation to deliver high purity 9-THP-2-fluoroadenine, which features ideal properties with respect to reactivity, solubility, and crystallinity. An acid-catalyzed liberation of 2-fluoroadenine in aqueous buffer delivers the appropriate purity profile to facilitate the enzymatic cascade to access MK-8591.</description><subject>Chemistry</subject><subject>Chemistry, Applied</subject><subject>Chemistry, Organic</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>1083-6160</issn><issn>1520-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KxDAUhYso-Lt3mb12vGnaTGcp1VHxD0TBXblNb7TSSYYkVdz5Cr6iT2LKiDvB1T2L8x0uX5Lsc5hwyPgRKj-xS9dOQAEIyNeSLV5kkBalfFyPGUqRSi5hM9n2_gUACsmzrWR5Qq_U2-WCTGBWM2SVXSzIqQ57do1m0KjC4DrzxO7sEIgFy7Kvj895P1hnsSXTGTpk98_ELumdPRiDsR7Zm0H1ZBv0NM5e-B6Dw9fO7SYbGntPez93J3mYn95X5-nV7dlFdXyVoshlSLnGIueoRcMVkMZWlEQoZqJsZKF5KVrSnM9krmaFoimqaVa0ugQN06ZVEsVOAqtd5az3jnS9dN0C3XvNoR6N1dFYPRqrf4xFpFwhb9RY7VVHRtEvFpVJwfOcT2GMVRcwdNZUdjAhogf_R2P7cNUeX3ixgzPRxN9_fQPXT5PC</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Hong, Cynthia M</creator><creator>Xu, Yingju</creator><creator>Chung, John Y. L</creator><creator>Schultz, Danielle M</creator><creator>Weisel, Mark</creator><creator>Varsolona, Richard J</creator><creator>Zhong, Yong-Li</creator><creator>Purohit, Akasha K</creator><creator>He, Cyndi Q</creator><creator>Gauthier, Donald R</creator><creator>Humphrey, Guy R</creator><creator>Maloney, Kevin M</creator><creator>Lévesque, François</creator><creator>Wang, Zhixun</creator><creator>Whittaker, Aaron M</creator><creator>Sirota, Eric</creator><creator>McMullen, Jonathan P</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>1KN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5969-2396</orcidid><orcidid>https://orcid.org/0000-0001-9529-4993</orcidid><orcidid>https://orcid.org/0000-0003-1422-5422</orcidid><orcidid>https://orcid.org/0000-0001-9701-3630</orcidid><orcidid>https://orcid.org/0000-0002-2563-219X</orcidid><orcidid>https://orcid.org/0000-0002-4811-2218</orcidid><orcidid>https://orcid.org/0000-0001-8634-1567</orcidid><orcidid>https://orcid.org/0000-0003-2825-0530</orcidid><orcidid>https://orcid.org/0000-0001-6094-5549</orcidid><orcidid>https://orcid.org/0000-0002-8348-5490</orcidid><orcidid>https://orcid.org/0000-0002-3143-6435</orcidid></search><sort><creationdate>20210319</creationdate><title>Development of a Commercial Manufacturing Route to 2‑Fluoroadenine, The Key Unnatural Nucleobase of Islatravir</title><author>Hong, Cynthia M ; Xu, Yingju ; Chung, John Y. L ; Schultz, Danielle M ; Weisel, Mark ; Varsolona, Richard J ; Zhong, Yong-Li ; Purohit, Akasha K ; He, Cyndi Q ; Gauthier, Donald R ; Humphrey, Guy R ; Maloney, Kevin M ; Lévesque, François ; Wang, Zhixun ; Whittaker, Aaron M ; Sirota, Eric ; McMullen, Jonathan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-1fa541af3b1c0efad38eea3938b65f183def11964c95ce7ac725df80f07bdc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Applied</topic><topic>Chemistry, Organic</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Cynthia M</creatorcontrib><creatorcontrib>Xu, Yingju</creatorcontrib><creatorcontrib>Chung, John Y. L</creatorcontrib><creatorcontrib>Schultz, Danielle M</creatorcontrib><creatorcontrib>Weisel, Mark</creatorcontrib><creatorcontrib>Varsolona, Richard J</creatorcontrib><creatorcontrib>Zhong, Yong-Li</creatorcontrib><creatorcontrib>Purohit, Akasha K</creatorcontrib><creatorcontrib>He, Cyndi Q</creatorcontrib><creatorcontrib>Gauthier, Donald R</creatorcontrib><creatorcontrib>Humphrey, Guy R</creatorcontrib><creatorcontrib>Maloney, Kevin M</creatorcontrib><creatorcontrib>Lévesque, François</creatorcontrib><creatorcontrib>Wang, Zhixun</creatorcontrib><creatorcontrib>Whittaker, Aaron M</creatorcontrib><creatorcontrib>Sirota, Eric</creatorcontrib><creatorcontrib>McMullen, Jonathan P</creatorcontrib><collection>Current Chemical Reactions</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Organic process research &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Cynthia M</au><au>Xu, Yingju</au><au>Chung, John Y. L</au><au>Schultz, Danielle M</au><au>Weisel, Mark</au><au>Varsolona, Richard J</au><au>Zhong, Yong-Li</au><au>Purohit, Akasha K</au><au>He, Cyndi Q</au><au>Gauthier, Donald R</au><au>Humphrey, Guy R</au><au>Maloney, Kevin M</au><au>Lévesque, François</au><au>Wang, Zhixun</au><au>Whittaker, Aaron M</au><au>Sirota, Eric</au><au>McMullen, Jonathan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Commercial Manufacturing Route to 2‑Fluoroadenine, The Key Unnatural Nucleobase of Islatravir</atitle><jtitle>Organic process research &amp; development</jtitle><stitle>ORG PROCESS RES DEV</stitle><addtitle>Org. Process Res. Dev</addtitle><date>2021-03-19</date><risdate>2021</risdate><volume>25</volume><issue>3</issue><spage>395</spage><epage>404</epage><pages>395-404</pages><issn>1083-6160</issn><eissn>1520-586X</eissn><abstract>We report the practical synthesis of a key fragment of islatravir (MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor (NRTTI) currently under investigation for treatment and pre-exposure prophylaxis (PrEP) against HIV infection. The fragment, the unnatural nucleobase 2-fluoroadenine, is incorporated into MK-8591 via a biocatalytic aldol-glycosylation cascade, which imposes stringent requirements for its synthesis and isolation. Presented herein is the development work leading to a practical, scalable route from guanine, featuring a dual fluorination approach to a novel 9-THP-2,6-difluoropurine intermediate that enables a mild, highly selective, direct amination. This one-pot fluorination/amination sequence utilizes a direct isolation to deliver high purity 9-THP-2-fluoroadenine, which features ideal properties with respect to reactivity, solubility, and crystallinity. An acid-catalyzed liberation of 2-fluoroadenine in aqueous buffer delivers the appropriate purity profile to facilitate the enzymatic cascade to access MK-8591.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acs.oprd.0c00304</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5969-2396</orcidid><orcidid>https://orcid.org/0000-0001-9529-4993</orcidid><orcidid>https://orcid.org/0000-0003-1422-5422</orcidid><orcidid>https://orcid.org/0000-0001-9701-3630</orcidid><orcidid>https://orcid.org/0000-0002-2563-219X</orcidid><orcidid>https://orcid.org/0000-0002-4811-2218</orcidid><orcidid>https://orcid.org/0000-0001-8634-1567</orcidid><orcidid>https://orcid.org/0000-0003-2825-0530</orcidid><orcidid>https://orcid.org/0000-0001-6094-5549</orcidid><orcidid>https://orcid.org/0000-0002-8348-5490</orcidid><orcidid>https://orcid.org/0000-0002-3143-6435</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-6160
ispartof Organic process research & development, 2021-03, Vol.25 (3), p.395-404
issn 1083-6160
1520-586X
language eng
recordid cdi_crossref_primary_10_1021_acs_oprd_0c00304
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals
subjects Chemistry
Chemistry, Applied
Chemistry, Organic
Physical Sciences
Science & Technology
title Development of a Commercial Manufacturing Route to 2‑Fluoroadenine, The Key Unnatural Nucleobase of Islatravir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Commercial%20Manufacturing%20Route%20to%202%E2%80%91Fluoroadenine,%20The%20Key%20Unnatural%20Nucleobase%20of%20Islatravir&rft.jtitle=Organic%20process%20research%20&%20development&rft.au=Hong,%20Cynthia%20M&rft.date=2021-03-19&rft.volume=25&rft.issue=3&rft.spage=395&rft.epage=404&rft.pages=395-404&rft.issn=1083-6160&rft.eissn=1520-586X&rft_id=info:doi/10.1021/acs.oprd.0c00304&rft_dat=%3Cacs_cross%3Ed222975075%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true