Fingerprinting Electronic Structure in Nanomaterials: A Methodology Illustrated by ZnSe Nanowires

Characterizing point defects that produce deep states in nanostructures is imperative when designing next-generation electronic and optoelectronic devices. Light emission and carrier transport properties are strongly influenced by the energy position and concentration of such states. The primary obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-04, Vol.19 (4), p.2259-2266
Hauptverfasser: Wisniewski, David, Byrne, Kristopher, Fernandes, Carlos, Stewart, Corey, de Souza, Christina F, Ruda, Harry E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2266
container_issue 4
container_start_page 2259
container_title Nano letters
container_volume 19
creator Wisniewski, David
Byrne, Kristopher
Fernandes, Carlos
Stewart, Corey
de Souza, Christina F
Ruda, Harry E
description Characterizing point defects that produce deep states in nanostructures is imperative when designing next-generation electronic and optoelectronic devices. Light emission and carrier transport properties are strongly influenced by the energy position and concentration of such states. The primary objective of this work is to fingerprint the electronic structure by characterizing the deep levels using a combined optical and electronic characterization, considering ZnSe nanowires as an example. Specifically, we use low temperature photoluminescence spectroscopy to identify the dominant recombination mechanisms and determine the total defect concentration. The carrier concentration and mobility are then calculated from electron transport measurements using single nanowire field effect transistors, and the measured experimental data were used to construct a model describing the types, energies, and ionized fraction of defects and calculate the deviation from stoichiometry. This metrology is hence demonstrated to provide an unambiguous means to determine a material’s electronic structure.
doi_str_mv 10.1021/acs.nanolett.8b04646
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_8b04646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b523734016</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-ff76b141f1af44f65ee07b8eaba2dfcc4e54f25df6006baebbc27cd74df108583</originalsourceid><addsrcrecordid>eNp9kM1OwzAMgCMEYmPwBgjlBTacNv3jNk0bTBpwGFy4VEnqjE5dOiWp0N6ejP0c8cWW7M-WP0LuGYwYROxRKDcywrQNej_KJfCUpxekz5IYhmlRRJfnOuc9cuPcGgCKOIFr0oshDxEVfSJmtVmh3dra-FDRaYPK29bUii697ZTvLNLa0LdwaSM82lo07omO6Sv677Zqm3a1o_Om6Zy3oV1RuaNfZol_wE9t0d2SKx0YvDvmAfmcTT8mL8PF-_N8Ml4MRcxzP9Q6SyXjTDOhOddpggiZzFFIEVVaKY4J11FS6RQglQKlVFGmqoxXmkGe5PGA8MNeZVvnLOoyPLURdlcyKPfGymCsPBkrj8YC9nDAtp3cYHWGTorCABwG9vi67awJX_y_8xfrRH7Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fingerprinting Electronic Structure in Nanomaterials: A Methodology Illustrated by ZnSe Nanowires</title><source>ACS Publications</source><creator>Wisniewski, David ; Byrne, Kristopher ; Fernandes, Carlos ; Stewart, Corey ; de Souza, Christina F ; Ruda, Harry E</creator><creatorcontrib>Wisniewski, David ; Byrne, Kristopher ; Fernandes, Carlos ; Stewart, Corey ; de Souza, Christina F ; Ruda, Harry E</creatorcontrib><description>Characterizing point defects that produce deep states in nanostructures is imperative when designing next-generation electronic and optoelectronic devices. Light emission and carrier transport properties are strongly influenced by the energy position and concentration of such states. The primary objective of this work is to fingerprint the electronic structure by characterizing the deep levels using a combined optical and electronic characterization, considering ZnSe nanowires as an example. Specifically, we use low temperature photoluminescence spectroscopy to identify the dominant recombination mechanisms and determine the total defect concentration. The carrier concentration and mobility are then calculated from electron transport measurements using single nanowire field effect transistors, and the measured experimental data were used to construct a model describing the types, energies, and ionized fraction of defects and calculate the deviation from stoichiometry. This metrology is hence demonstrated to provide an unambiguous means to determine a material’s electronic structure.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b04646</identifier><identifier>PMID: 30888829</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-04, Vol.19 (4), p.2259-2266</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-ff76b141f1af44f65ee07b8eaba2dfcc4e54f25df6006baebbc27cd74df108583</citedby><cites>FETCH-LOGICAL-a348t-ff76b141f1af44f65ee07b8eaba2dfcc4e54f25df6006baebbc27cd74df108583</cites><orcidid>0000-0002-4430-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b04646$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04646$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30888829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wisniewski, David</creatorcontrib><creatorcontrib>Byrne, Kristopher</creatorcontrib><creatorcontrib>Fernandes, Carlos</creatorcontrib><creatorcontrib>Stewart, Corey</creatorcontrib><creatorcontrib>de Souza, Christina F</creatorcontrib><creatorcontrib>Ruda, Harry E</creatorcontrib><title>Fingerprinting Electronic Structure in Nanomaterials: A Methodology Illustrated by ZnSe Nanowires</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Characterizing point defects that produce deep states in nanostructures is imperative when designing next-generation electronic and optoelectronic devices. Light emission and carrier transport properties are strongly influenced by the energy position and concentration of such states. The primary objective of this work is to fingerprint the electronic structure by characterizing the deep levels using a combined optical and electronic characterization, considering ZnSe nanowires as an example. Specifically, we use low temperature photoluminescence spectroscopy to identify the dominant recombination mechanisms and determine the total defect concentration. The carrier concentration and mobility are then calculated from electron transport measurements using single nanowire field effect transistors, and the measured experimental data were used to construct a model describing the types, energies, and ionized fraction of defects and calculate the deviation from stoichiometry. This metrology is hence demonstrated to provide an unambiguous means to determine a material’s electronic structure.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAMgCMEYmPwBgjlBTacNv3jNk0bTBpwGFy4VEnqjE5dOiWp0N6ejP0c8cWW7M-WP0LuGYwYROxRKDcywrQNej_KJfCUpxekz5IYhmlRRJfnOuc9cuPcGgCKOIFr0oshDxEVfSJmtVmh3dra-FDRaYPK29bUii697ZTvLNLa0LdwaSM82lo07omO6Sv677Zqm3a1o_Om6Zy3oV1RuaNfZol_wE9t0d2SKx0YvDvmAfmcTT8mL8PF-_N8Ml4MRcxzP9Q6SyXjTDOhOddpggiZzFFIEVVaKY4J11FS6RQglQKlVFGmqoxXmkGe5PGA8MNeZVvnLOoyPLURdlcyKPfGymCsPBkrj8YC9nDAtp3cYHWGTorCABwG9vi67awJX_y_8xfrRH7Z</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Wisniewski, David</creator><creator>Byrne, Kristopher</creator><creator>Fernandes, Carlos</creator><creator>Stewart, Corey</creator><creator>de Souza, Christina F</creator><creator>Ruda, Harry E</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4430-663X</orcidid></search><sort><creationdate>20190410</creationdate><title>Fingerprinting Electronic Structure in Nanomaterials: A Methodology Illustrated by ZnSe Nanowires</title><author>Wisniewski, David ; Byrne, Kristopher ; Fernandes, Carlos ; Stewart, Corey ; de Souza, Christina F ; Ruda, Harry E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-ff76b141f1af44f65ee07b8eaba2dfcc4e54f25df6006baebbc27cd74df108583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wisniewski, David</creatorcontrib><creatorcontrib>Byrne, Kristopher</creatorcontrib><creatorcontrib>Fernandes, Carlos</creatorcontrib><creatorcontrib>Stewart, Corey</creatorcontrib><creatorcontrib>de Souza, Christina F</creatorcontrib><creatorcontrib>Ruda, Harry E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wisniewski, David</au><au>Byrne, Kristopher</au><au>Fernandes, Carlos</au><au>Stewart, Corey</au><au>de Souza, Christina F</au><au>Ruda, Harry E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprinting Electronic Structure in Nanomaterials: A Methodology Illustrated by ZnSe Nanowires</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-04-10</date><risdate>2019</risdate><volume>19</volume><issue>4</issue><spage>2259</spage><epage>2266</epage><pages>2259-2266</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Characterizing point defects that produce deep states in nanostructures is imperative when designing next-generation electronic and optoelectronic devices. Light emission and carrier transport properties are strongly influenced by the energy position and concentration of such states. The primary objective of this work is to fingerprint the electronic structure by characterizing the deep levels using a combined optical and electronic characterization, considering ZnSe nanowires as an example. Specifically, we use low temperature photoluminescence spectroscopy to identify the dominant recombination mechanisms and determine the total defect concentration. The carrier concentration and mobility are then calculated from electron transport measurements using single nanowire field effect transistors, and the measured experimental data were used to construct a model describing the types, energies, and ionized fraction of defects and calculate the deviation from stoichiometry. This metrology is hence demonstrated to provide an unambiguous means to determine a material’s electronic structure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30888829</pmid><doi>10.1021/acs.nanolett.8b04646</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4430-663X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-04, Vol.19 (4), p.2259-2266
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_acs_nanolett_8b04646
source ACS Publications
title Fingerprinting Electronic Structure in Nanomaterials: A Methodology Illustrated by ZnSe Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprinting%20Electronic%20Structure%20in%20Nanomaterials:%20A%20Methodology%20Illustrated%20by%20ZnSe%20Nanowires&rft.jtitle=Nano%20letters&rft.au=Wisniewski,%20David&rft.date=2019-04-10&rft.volume=19&rft.issue=4&rft.spage=2259&rft.epage=2266&rft.pages=2259-2266&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b04646&rft_dat=%3Cacs_cross%3Eb523734016%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30888829&rfr_iscdi=true