Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures

The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-03, Vol.18 (3), p.1628-1636
Hauptverfasser: Brown, Lisa V, Davanco, Marcelo, Sun, Zhiyuan, Kretinin, Andrey, Chen, Yiguo, Matson, Joseph R, Vurgaftman, Igor, Sharac, Nicholas, Giles, Alexander J, Fogler, Michael M, Taniguchi, Takashi, Watanabe, Kenji, Novoselov, Kostya S, Maier, Stefan A, Centrone, Andrea, Caldwell, Joshua D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1636
container_issue 3
container_start_page 1628
container_title Nano letters
container_volume 18
creator Brown, Lisa V
Davanco, Marcelo
Sun, Zhiyuan
Kretinin, Andrey
Chen, Yiguo
Matson, Joseph R
Vurgaftman, Igor
Sharac, Nicholas
Giles, Alexander J
Fogler, Michael M
Taniguchi, Takashi
Watanabe, Kenji
Novoselov, Kostya S
Maier, Stefan A
Centrone, Andrea
Caldwell, Joshua D
description The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.
doi_str_mv 10.1021/acs.nanolett.7b04476
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_7b04476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a392708816</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</originalsourceid><addsrcrecordid>eNp9kN1OAjEQhRujEUTfwJi-ADjt_tBeKlExAbxQrzezbZeULNtNu2vk7S0iXHo1k8w5J3M-Qm4ZTBhwdo8qTBpsXG26bjItIU2n-RkZsiyBcS4lPz_tIh2QqxA2ACCTDC7JgMs0YwL4kGxXMSIorA1dYtvaZk2x0fS9Narz8eDaHXUVXbnGo7bY2S9D57vW-NLVVtGl0yZQ29C5-ca1a7Cmj867hq5s56029De-873qem_CNbmosA7m5m-OyOfz08dsPl68vbzOHhZjjH9141JUSQWlQC64FIbLRMO0rFCikSLLQFSKlTzJtULGADBPpZEZlCZTuWBcJyOSHnJV7BC8qYrW2y36XcGg2NMrIr3iSK_4oxdtdwdb25dbo0-mI64ogINgb9-43sfC4f_MH4cAgbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</title><source>American Chemical Society Journals</source><creator>Brown, Lisa V ; Davanco, Marcelo ; Sun, Zhiyuan ; Kretinin, Andrey ; Chen, Yiguo ; Matson, Joseph R ; Vurgaftman, Igor ; Sharac, Nicholas ; Giles, Alexander J ; Fogler, Michael M ; Taniguchi, Takashi ; Watanabe, Kenji ; Novoselov, Kostya S ; Maier, Stefan A ; Centrone, Andrea ; Caldwell, Joshua D</creator><creatorcontrib>Brown, Lisa V ; Davanco, Marcelo ; Sun, Zhiyuan ; Kretinin, Andrey ; Chen, Yiguo ; Matson, Joseph R ; Vurgaftman, Igor ; Sharac, Nicholas ; Giles, Alexander J ; Fogler, Michael M ; Taniguchi, Takashi ; Watanabe, Kenji ; Novoselov, Kostya S ; Maier, Stefan A ; Centrone, Andrea ; Caldwell, Joshua D</creatorcontrib><description>The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b04476</identifier><identifier>PMID: 29451802</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2018-03, Vol.18 (3), p.1628-1636</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</citedby><cites>FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</cites><orcidid>0000-0003-0374-2168 ; 0000-0003-3701-8119 ; 0000-0002-2919-3366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04476$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b04476$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29451802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Lisa V</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Kretinin, Andrey</creatorcontrib><creatorcontrib>Chen, Yiguo</creatorcontrib><creatorcontrib>Matson, Joseph R</creatorcontrib><creatorcontrib>Vurgaftman, Igor</creatorcontrib><creatorcontrib>Sharac, Nicholas</creatorcontrib><creatorcontrib>Giles, Alexander J</creatorcontrib><creatorcontrib>Fogler, Michael M</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Maier, Stefan A</creatorcontrib><creatorcontrib>Centrone, Andrea</creatorcontrib><creatorcontrib>Caldwell, Joshua D</creatorcontrib><title>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kN1OAjEQhRujEUTfwJi-ADjt_tBeKlExAbxQrzezbZeULNtNu2vk7S0iXHo1k8w5J3M-Qm4ZTBhwdo8qTBpsXG26bjItIU2n-RkZsiyBcS4lPz_tIh2QqxA2ACCTDC7JgMs0YwL4kGxXMSIorA1dYtvaZk2x0fS9Narz8eDaHXUVXbnGo7bY2S9D57vW-NLVVtGl0yZQ29C5-ca1a7Cmj867hq5s56029De-873qem_CNbmosA7m5m-OyOfz08dsPl68vbzOHhZjjH9141JUSQWlQC64FIbLRMO0rFCikSLLQFSKlTzJtULGADBPpZEZlCZTuWBcJyOSHnJV7BC8qYrW2y36XcGg2NMrIr3iSK_4oxdtdwdb25dbo0-mI64ogINgb9-43sfC4f_MH4cAgbM</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Brown, Lisa V</creator><creator>Davanco, Marcelo</creator><creator>Sun, Zhiyuan</creator><creator>Kretinin, Andrey</creator><creator>Chen, Yiguo</creator><creator>Matson, Joseph R</creator><creator>Vurgaftman, Igor</creator><creator>Sharac, Nicholas</creator><creator>Giles, Alexander J</creator><creator>Fogler, Michael M</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Novoselov, Kostya S</creator><creator>Maier, Stefan A</creator><creator>Centrone, Andrea</creator><creator>Caldwell, Joshua D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0374-2168</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2919-3366</orcidid></search><sort><creationdate>20180314</creationdate><title>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</title><author>Brown, Lisa V ; Davanco, Marcelo ; Sun, Zhiyuan ; Kretinin, Andrey ; Chen, Yiguo ; Matson, Joseph R ; Vurgaftman, Igor ; Sharac, Nicholas ; Giles, Alexander J ; Fogler, Michael M ; Taniguchi, Takashi ; Watanabe, Kenji ; Novoselov, Kostya S ; Maier, Stefan A ; Centrone, Andrea ; Caldwell, Joshua D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Lisa V</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Kretinin, Andrey</creatorcontrib><creatorcontrib>Chen, Yiguo</creatorcontrib><creatorcontrib>Matson, Joseph R</creatorcontrib><creatorcontrib>Vurgaftman, Igor</creatorcontrib><creatorcontrib>Sharac, Nicholas</creatorcontrib><creatorcontrib>Giles, Alexander J</creatorcontrib><creatorcontrib>Fogler, Michael M</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Maier, Stefan A</creatorcontrib><creatorcontrib>Centrone, Andrea</creatorcontrib><creatorcontrib>Caldwell, Joshua D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Lisa V</au><au>Davanco, Marcelo</au><au>Sun, Zhiyuan</au><au>Kretinin, Andrey</au><au>Chen, Yiguo</au><au>Matson, Joseph R</au><au>Vurgaftman, Igor</au><au>Sharac, Nicholas</au><au>Giles, Alexander J</au><au>Fogler, Michael M</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Novoselov, Kostya S</au><au>Maier, Stefan A</au><au>Centrone, Andrea</au><au>Caldwell, Joshua D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1628</spage><epage>1636</epage><pages>1628-1636</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29451802</pmid><doi>10.1021/acs.nanolett.7b04476</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0374-2168</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2919-3366</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-03, Vol.18 (3), p.1628-1636
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_acs_nanolett_7b04476
source American Chemical Society Journals
title Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Mapping%20and%20Spectroscopy%20of%20Nonradiative%20Hyperbolic%20Modes%20in%20Hexagonal%20Boron%20Nitride%20Nanostructures&rft.jtitle=Nano%20letters&rft.au=Brown,%20Lisa%20V&rft.date=2018-03-14&rft.volume=18&rft.issue=3&rft.spage=1628&rft.epage=1636&rft.pages=1628-1636&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b04476&rft_dat=%3Cacs_cross%3Ea392708816%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29451802&rfr_iscdi=true