Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures
The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed,...
Gespeichert in:
Veröffentlicht in: | Nano letters 2018-03, Vol.18 (3), p.1628-1636 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1636 |
---|---|
container_issue | 3 |
container_start_page | 1628 |
container_title | Nano letters |
container_volume | 18 |
creator | Brown, Lisa V Davanco, Marcelo Sun, Zhiyuan Kretinin, Andrey Chen, Yiguo Matson, Joseph R Vurgaftman, Igor Sharac, Nicholas Giles, Alexander J Fogler, Michael M Taniguchi, Takashi Watanabe, Kenji Novoselov, Kostya S Maier, Stefan A Centrone, Andrea Caldwell, Joshua D |
description | The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications. |
doi_str_mv | 10.1021/acs.nanolett.7b04476 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_7b04476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a392708816</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</originalsourceid><addsrcrecordid>eNp9kN1OAjEQhRujEUTfwJi-ADjt_tBeKlExAbxQrzezbZeULNtNu2vk7S0iXHo1k8w5J3M-Qm4ZTBhwdo8qTBpsXG26bjItIU2n-RkZsiyBcS4lPz_tIh2QqxA2ACCTDC7JgMs0YwL4kGxXMSIorA1dYtvaZk2x0fS9Narz8eDaHXUVXbnGo7bY2S9D57vW-NLVVtGl0yZQ29C5-ca1a7Cmj867hq5s56029De-873qem_CNbmosA7m5m-OyOfz08dsPl68vbzOHhZjjH9141JUSQWlQC64FIbLRMO0rFCikSLLQFSKlTzJtULGADBPpZEZlCZTuWBcJyOSHnJV7BC8qYrW2y36XcGg2NMrIr3iSK_4oxdtdwdb25dbo0-mI64ogINgb9-43sfC4f_MH4cAgbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</title><source>American Chemical Society Journals</source><creator>Brown, Lisa V ; Davanco, Marcelo ; Sun, Zhiyuan ; Kretinin, Andrey ; Chen, Yiguo ; Matson, Joseph R ; Vurgaftman, Igor ; Sharac, Nicholas ; Giles, Alexander J ; Fogler, Michael M ; Taniguchi, Takashi ; Watanabe, Kenji ; Novoselov, Kostya S ; Maier, Stefan A ; Centrone, Andrea ; Caldwell, Joshua D</creator><creatorcontrib>Brown, Lisa V ; Davanco, Marcelo ; Sun, Zhiyuan ; Kretinin, Andrey ; Chen, Yiguo ; Matson, Joseph R ; Vurgaftman, Igor ; Sharac, Nicholas ; Giles, Alexander J ; Fogler, Michael M ; Taniguchi, Takashi ; Watanabe, Kenji ; Novoselov, Kostya S ; Maier, Stefan A ; Centrone, Andrea ; Caldwell, Joshua D</creatorcontrib><description>The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b04476</identifier><identifier>PMID: 29451802</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2018-03, Vol.18 (3), p.1628-1636</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</citedby><cites>FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</cites><orcidid>0000-0003-0374-2168 ; 0000-0003-3701-8119 ; 0000-0002-2919-3366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04476$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b04476$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29451802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Lisa V</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Kretinin, Andrey</creatorcontrib><creatorcontrib>Chen, Yiguo</creatorcontrib><creatorcontrib>Matson, Joseph R</creatorcontrib><creatorcontrib>Vurgaftman, Igor</creatorcontrib><creatorcontrib>Sharac, Nicholas</creatorcontrib><creatorcontrib>Giles, Alexander J</creatorcontrib><creatorcontrib>Fogler, Michael M</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Maier, Stefan A</creatorcontrib><creatorcontrib>Centrone, Andrea</creatorcontrib><creatorcontrib>Caldwell, Joshua D</creatorcontrib><title>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kN1OAjEQhRujEUTfwJi-ADjt_tBeKlExAbxQrzezbZeULNtNu2vk7S0iXHo1k8w5J3M-Qm4ZTBhwdo8qTBpsXG26bjItIU2n-RkZsiyBcS4lPz_tIh2QqxA2ACCTDC7JgMs0YwL4kGxXMSIorA1dYtvaZk2x0fS9Narz8eDaHXUVXbnGo7bY2S9D57vW-NLVVtGl0yZQ29C5-ca1a7Cmj867hq5s56029De-873qem_CNbmosA7m5m-OyOfz08dsPl68vbzOHhZjjH9141JUSQWlQC64FIbLRMO0rFCikSLLQFSKlTzJtULGADBPpZEZlCZTuWBcJyOSHnJV7BC8qYrW2y36XcGg2NMrIr3iSK_4oxdtdwdb25dbo0-mI64ogINgb9-43sfC4f_MH4cAgbM</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Brown, Lisa V</creator><creator>Davanco, Marcelo</creator><creator>Sun, Zhiyuan</creator><creator>Kretinin, Andrey</creator><creator>Chen, Yiguo</creator><creator>Matson, Joseph R</creator><creator>Vurgaftman, Igor</creator><creator>Sharac, Nicholas</creator><creator>Giles, Alexander J</creator><creator>Fogler, Michael M</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Novoselov, Kostya S</creator><creator>Maier, Stefan A</creator><creator>Centrone, Andrea</creator><creator>Caldwell, Joshua D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0374-2168</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2919-3366</orcidid></search><sort><creationdate>20180314</creationdate><title>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</title><author>Brown, Lisa V ; Davanco, Marcelo ; Sun, Zhiyuan ; Kretinin, Andrey ; Chen, Yiguo ; Matson, Joseph R ; Vurgaftman, Igor ; Sharac, Nicholas ; Giles, Alexander J ; Fogler, Michael M ; Taniguchi, Takashi ; Watanabe, Kenji ; Novoselov, Kostya S ; Maier, Stefan A ; Centrone, Andrea ; Caldwell, Joshua D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-b8f3f0b8a28298e293d07bfa9ae985508fc1b236dca1100a649e950be5c6812d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Lisa V</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Kretinin, Andrey</creatorcontrib><creatorcontrib>Chen, Yiguo</creatorcontrib><creatorcontrib>Matson, Joseph R</creatorcontrib><creatorcontrib>Vurgaftman, Igor</creatorcontrib><creatorcontrib>Sharac, Nicholas</creatorcontrib><creatorcontrib>Giles, Alexander J</creatorcontrib><creatorcontrib>Fogler, Michael M</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Maier, Stefan A</creatorcontrib><creatorcontrib>Centrone, Andrea</creatorcontrib><creatorcontrib>Caldwell, Joshua D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Lisa V</au><au>Davanco, Marcelo</au><au>Sun, Zhiyuan</au><au>Kretinin, Andrey</au><au>Chen, Yiguo</au><au>Matson, Joseph R</au><au>Vurgaftman, Igor</au><au>Sharac, Nicholas</au><au>Giles, Alexander J</au><au>Fogler, Michael M</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Novoselov, Kostya S</au><au>Maier, Stefan A</au><au>Centrone, Andrea</au><au>Caldwell, Joshua D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1628</spage><epage>1636</epage><pages>1628-1636</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29451802</pmid><doi>10.1021/acs.nanolett.7b04476</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0374-2168</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2919-3366</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2018-03, Vol.18 (3), p.1628-1636 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_nanolett_7b04476 |
source | American Chemical Society Journals |
title | Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Mapping%20and%20Spectroscopy%20of%20Nonradiative%20Hyperbolic%20Modes%20in%20Hexagonal%20Boron%20Nitride%20Nanostructures&rft.jtitle=Nano%20letters&rft.au=Brown,%20Lisa%20V&rft.date=2018-03-14&rft.volume=18&rft.issue=3&rft.spage=1628&rft.epage=1636&rft.pages=1628-1636&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b04476&rft_dat=%3Cacs_cross%3Ea392708816%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29451802&rfr_iscdi=true |