Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells
Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS QDs, focus on the control of in...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-08, Vol.24 (34), p.10418-10425 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10425 |
---|---|
container_issue | 34 |
container_start_page | 10418 |
container_title | Nano letters |
container_volume | 24 |
creator | Ji, Yongqiang Zhong, Qixuan Yang, Xiaoyu Li, Lei Li, Qiuyang Xu, Hongyu Chen, Peng Li, Shunde Yan, Haoming Xiao, Yun Xu, Fan Qiu, Hengwei Gong, Qihuang Zhao, Lichen Zhu, Rui |
description | Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS
QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS
QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS
QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices. |
doi_str_mv | 10.1021/acs.nanolett.4c00959 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_4c00959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39158928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c688-45877c4770aa4c1985564d829d99ae4c448fbec914b3acaabc72d35e0da88b973</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EoqXwBwj5BxLs2E7sZQnhIVVCqN1HN85NFZQ4lZ0s-HuC-ljNLObM4hDyyFnMWcKfwYbYgRs6HMdYWsaMMldkyZVgUWpMcn3pWi7IXQg_bN4IxW7JQhiutEn0khTbyTdgkRZu3zpE37r93KHqMNCiaVrbohvpev_SbmlCvydw49TT12Gk26EDT3PsunBPbhroAj6cckV2b8Uu_4g2X--f-XoT2VTrSCqdZVZmGQOQlhutVCprnZjaGEBppdRNhdZwWQmwAJXNklooZDVoXZlMrIg83lo_hOCxKQ--7cH_lpyV_1LKWUp5llKepMzY0xE7TFWP9QU6WxB_WMdgrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</title><source>ACS Publications</source><creator>Ji, Yongqiang ; Zhong, Qixuan ; Yang, Xiaoyu ; Li, Lei ; Li, Qiuyang ; Xu, Hongyu ; Chen, Peng ; Li, Shunde ; Yan, Haoming ; Xiao, Yun ; Xu, Fan ; Qiu, Hengwei ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creator><creatorcontrib>Ji, Yongqiang ; Zhong, Qixuan ; Yang, Xiaoyu ; Li, Lei ; Li, Qiuyang ; Xu, Hongyu ; Chen, Peng ; Li, Shunde ; Yan, Haoming ; Xiao, Yun ; Xu, Fan ; Qiu, Hengwei ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creatorcontrib><description>Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS
QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS
QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS
QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c00959</identifier><identifier>PMID: 39158928</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nano letters, 2024-08, Vol.24 (34), p.10418-10425</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c688-45877c4770aa4c1985564d829d99ae4c448fbec914b3acaabc72d35e0da88b973</cites><orcidid>0000-0001-7631-3589 ; 0000-0002-0848-9643 ; 0000-0003-0833-1982 ; 0000-0003-2537-6963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39158928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Qiu, Hengwei</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><title>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS
QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS
QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS
QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EoqXwBwj5BxLs2E7sZQnhIVVCqN1HN85NFZQ4lZ0s-HuC-ljNLObM4hDyyFnMWcKfwYbYgRs6HMdYWsaMMldkyZVgUWpMcn3pWi7IXQg_bN4IxW7JQhiutEn0khTbyTdgkRZu3zpE37r93KHqMNCiaVrbohvpev_SbmlCvydw49TT12Gk26EDT3PsunBPbhroAj6cckV2b8Uu_4g2X--f-XoT2VTrSCqdZVZmGQOQlhutVCprnZjaGEBppdRNhdZwWQmwAJXNklooZDVoXZlMrIg83lo_hOCxKQ--7cH_lpyV_1LKWUp5llKepMzY0xE7TFWP9QU6WxB_WMdgrA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Ji, Yongqiang</creator><creator>Zhong, Qixuan</creator><creator>Yang, Xiaoyu</creator><creator>Li, Lei</creator><creator>Li, Qiuyang</creator><creator>Xu, Hongyu</creator><creator>Chen, Peng</creator><creator>Li, Shunde</creator><creator>Yan, Haoming</creator><creator>Xiao, Yun</creator><creator>Xu, Fan</creator><creator>Qiu, Hengwei</creator><creator>Gong, Qihuang</creator><creator>Zhao, Lichen</creator><creator>Zhu, Rui</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-0848-9643</orcidid><orcidid>https://orcid.org/0000-0003-0833-1982</orcidid><orcidid>https://orcid.org/0000-0003-2537-6963</orcidid></search><sort><creationdate>20240828</creationdate><title>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</title><author>Ji, Yongqiang ; Zhong, Qixuan ; Yang, Xiaoyu ; Li, Lei ; Li, Qiuyang ; Xu, Hongyu ; Chen, Peng ; Li, Shunde ; Yan, Haoming ; Xiao, Yun ; Xu, Fan ; Qiu, Hengwei ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c688-45877c4770aa4c1985564d829d99ae4c448fbec914b3acaabc72d35e0da88b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Qiu, Hengwei</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yongqiang</au><au>Zhong, Qixuan</au><au>Yang, Xiaoyu</au><au>Li, Lei</au><au>Li, Qiuyang</au><au>Xu, Hongyu</au><au>Chen, Peng</au><au>Li, Shunde</au><au>Yan, Haoming</au><au>Xiao, Yun</au><au>Xu, Fan</au><au>Qiu, Hengwei</au><au>Gong, Qihuang</au><au>Zhao, Lichen</au><au>Zhu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>24</volume><issue>34</issue><spage>10418</spage><epage>10425</epage><pages>10418-10425</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS
QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS
QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS
QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.</abstract><cop>United States</cop><pmid>39158928</pmid><doi>10.1021/acs.nanolett.4c00959</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-0848-9643</orcidid><orcidid>https://orcid.org/0000-0003-0833-1982</orcidid><orcidid>https://orcid.org/0000-0003-2537-6963</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-08, Vol.24 (34), p.10418-10425 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_nanolett_4c00959 |
source | ACS Publications |
title | Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Engineering%20Enables%20Efficient%20AgBiS%202%20Quantum%20Dot%20Solar%20Cells&rft.jtitle=Nano%20letters&rft.au=Ji,%20Yongqiang&rft.date=2024-08-28&rft.volume=24&rft.issue=34&rft.spage=10418&rft.epage=10425&rft.pages=10418-10425&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c00959&rft_dat=%3Cpubmed_cross%3E39158928%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39158928&rfr_iscdi=true |