Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells

Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS QDs, focus on the control of in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-08, Vol.24 (34), p.10418-10425
Hauptverfasser: Ji, Yongqiang, Zhong, Qixuan, Yang, Xiaoyu, Li, Lei, Li, Qiuyang, Xu, Hongyu, Chen, Peng, Li, Shunde, Yan, Haoming, Xiao, Yun, Xu, Fan, Qiu, Hengwei, Gong, Qihuang, Zhao, Lichen, Zhu, Rui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10425
container_issue 34
container_start_page 10418
container_title Nano letters
container_volume 24
creator Ji, Yongqiang
Zhong, Qixuan
Yang, Xiaoyu
Li, Lei
Li, Qiuyang
Xu, Hongyu
Chen, Peng
Li, Shunde
Yan, Haoming
Xiao, Yun
Xu, Fan
Qiu, Hengwei
Gong, Qihuang
Zhao, Lichen
Zhu, Rui
description Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.
doi_str_mv 10.1021/acs.nanolett.4c00959
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_4c00959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39158928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c688-45877c4770aa4c1985564d829d99ae4c448fbec914b3acaabc72d35e0da88b973</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EoqXwBwj5BxLs2E7sZQnhIVVCqN1HN85NFZQ4lZ0s-HuC-ljNLObM4hDyyFnMWcKfwYbYgRs6HMdYWsaMMldkyZVgUWpMcn3pWi7IXQg_bN4IxW7JQhiutEn0khTbyTdgkRZu3zpE37r93KHqMNCiaVrbohvpev_SbmlCvydw49TT12Gk26EDT3PsunBPbhroAj6cckV2b8Uu_4g2X--f-XoT2VTrSCqdZVZmGQOQlhutVCprnZjaGEBppdRNhdZwWQmwAJXNklooZDVoXZlMrIg83lo_hOCxKQ--7cH_lpyV_1LKWUp5llKepMzY0xE7TFWP9QU6WxB_WMdgrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</title><source>ACS Publications</source><creator>Ji, Yongqiang ; Zhong, Qixuan ; Yang, Xiaoyu ; Li, Lei ; Li, Qiuyang ; Xu, Hongyu ; Chen, Peng ; Li, Shunde ; Yan, Haoming ; Xiao, Yun ; Xu, Fan ; Qiu, Hengwei ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creator><creatorcontrib>Ji, Yongqiang ; Zhong, Qixuan ; Yang, Xiaoyu ; Li, Lei ; Li, Qiuyang ; Xu, Hongyu ; Chen, Peng ; Li, Shunde ; Yan, Haoming ; Xiao, Yun ; Xu, Fan ; Qiu, Hengwei ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</creatorcontrib><description>Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c00959</identifier><identifier>PMID: 39158928</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nano letters, 2024-08, Vol.24 (34), p.10418-10425</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c688-45877c4770aa4c1985564d829d99ae4c448fbec914b3acaabc72d35e0da88b973</cites><orcidid>0000-0001-7631-3589 ; 0000-0002-0848-9643 ; 0000-0003-0833-1982 ; 0000-0003-2537-6963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39158928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Qiu, Hengwei</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><title>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EoqXwBwj5BxLs2E7sZQnhIVVCqN1HN85NFZQ4lZ0s-HuC-ljNLObM4hDyyFnMWcKfwYbYgRs6HMdYWsaMMldkyZVgUWpMcn3pWi7IXQg_bN4IxW7JQhiutEn0khTbyTdgkRZu3zpE37r93KHqMNCiaVrbohvpev_SbmlCvydw49TT12Gk26EDT3PsunBPbhroAj6cckV2b8Uu_4g2X--f-XoT2VTrSCqdZVZmGQOQlhutVCprnZjaGEBppdRNhdZwWQmwAJXNklooZDVoXZlMrIg83lo_hOCxKQ--7cH_lpyV_1LKWUp5llKepMzY0xE7TFWP9QU6WxB_WMdgrA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Ji, Yongqiang</creator><creator>Zhong, Qixuan</creator><creator>Yang, Xiaoyu</creator><creator>Li, Lei</creator><creator>Li, Qiuyang</creator><creator>Xu, Hongyu</creator><creator>Chen, Peng</creator><creator>Li, Shunde</creator><creator>Yan, Haoming</creator><creator>Xiao, Yun</creator><creator>Xu, Fan</creator><creator>Qiu, Hengwei</creator><creator>Gong, Qihuang</creator><creator>Zhao, Lichen</creator><creator>Zhu, Rui</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-0848-9643</orcidid><orcidid>https://orcid.org/0000-0003-0833-1982</orcidid><orcidid>https://orcid.org/0000-0003-2537-6963</orcidid></search><sort><creationdate>20240828</creationdate><title>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</title><author>Ji, Yongqiang ; Zhong, Qixuan ; Yang, Xiaoyu ; Li, Lei ; Li, Qiuyang ; Xu, Hongyu ; Chen, Peng ; Li, Shunde ; Yan, Haoming ; Xiao, Yun ; Xu, Fan ; Qiu, Hengwei ; Gong, Qihuang ; Zhao, Lichen ; Zhu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c688-45877c4770aa4c1985564d829d99ae4c448fbec914b3acaabc72d35e0da88b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yongqiang</creatorcontrib><creatorcontrib>Zhong, Qixuan</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Qiuyang</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Yan, Haoming</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Qiu, Hengwei</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yongqiang</au><au>Zhong, Qixuan</au><au>Yang, Xiaoyu</au><au>Li, Lei</au><au>Li, Qiuyang</au><au>Xu, Hongyu</au><au>Chen, Peng</au><au>Li, Shunde</au><au>Yan, Haoming</au><au>Xiao, Yun</au><au>Xu, Fan</au><au>Qiu, Hengwei</au><au>Gong, Qihuang</au><au>Zhao, Lichen</au><au>Zhu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>24</volume><issue>34</issue><spage>10418</spage><epage>10425</epage><pages>10418-10425</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.</abstract><cop>United States</cop><pmid>39158928</pmid><doi>10.1021/acs.nanolett.4c00959</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-0848-9643</orcidid><orcidid>https://orcid.org/0000-0003-0833-1982</orcidid><orcidid>https://orcid.org/0000-0003-2537-6963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-08, Vol.24 (34), p.10418-10425
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_acs_nanolett_4c00959
source ACS Publications
title Surface Engineering Enables Efficient AgBiS 2 Quantum Dot Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Engineering%20Enables%20Efficient%20AgBiS%202%20Quantum%20Dot%20Solar%20Cells&rft.jtitle=Nano%20letters&rft.au=Ji,%20Yongqiang&rft.date=2024-08-28&rft.volume=24&rft.issue=34&rft.spage=10418&rft.epage=10425&rft.pages=10418-10425&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c00959&rft_dat=%3Cpubmed_cross%3E39158928%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39158928&rfr_iscdi=true