Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics

Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-02, Vol.21 (3), p.1400-1411
Hauptverfasser: Tai, Chun-San, Lan, Kuan-Chun, Wang, Erick, Chan, Fu-Erh, Hsieh, Ming-Ting, Huang, Ching-Wen, Weng, Shun-Long, Chen, Po-Chun, Chen, Wen Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1411
container_issue 3
container_start_page 1400
container_title Nano letters
container_volume 21
creator Tai, Chun-San
Lan, Kuan-Chun
Wang, Erick
Chan, Fu-Erh
Hsieh, Ming-Ting
Huang, Ching-Wen
Weng, Shun-Long
Chen, Po-Chun
Chen, Wen Liang
description Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.
doi_str_mv 10.1021/acs.nanolett.0c04209
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_0c04209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d99708716</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-d222ce7ac7e625e214e83592afdfb6820a0fbb326228ea5ede428b544111aaaf3</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EolD4A4T8Aym2MzRZVm0ZpBYWDNvoxXkGV0kc2U6lsuPPSemwRLL0vLjnSvcQcsPZiDPB70C6UQONqdD7EZMsEiw7IRc8DlmQZJk4Pf7TaEAunVsxxrIwZudkEIaxEKkQF-Tnua_wpjWfFtqvDQVHJ9ZrpaWGii61tAabtbamqbHxVBlLJ1J2FjzSD-06qPQ3eG0aahRdogfXP-3oDNdYmfYPWmugr7ruqmNwPl3S2aaBWkt3Rc4UVA6v93dI3u_nb9PHYPHy8DSdLAIIo9QHpRBC4hjkGBMRo-ARpmGcCVClKpJUMGCqKEKR9MMQYiwxEmkRRxHnHABUOCTRrref5JxFlbdW12A3OWf51mjeG80PRvO90R673WFtV9RYHqGDwj7AdoEtvjKdbfoV_3f-Aiq8ibU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics</title><source>American Chemical Society Journals</source><creator>Tai, Chun-San ; Lan, Kuan-Chun ; Wang, Erick ; Chan, Fu-Erh ; Hsieh, Ming-Ting ; Huang, Ching-Wen ; Weng, Shun-Long ; Chen, Po-Chun ; Chen, Wen Liang</creator><creatorcontrib>Tai, Chun-San ; Lan, Kuan-Chun ; Wang, Erick ; Chan, Fu-Erh ; Hsieh, Ming-Ting ; Huang, Ching-Wen ; Weng, Shun-Long ; Chen, Po-Chun ; Chen, Wen Liang</creatorcontrib><description>Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c04209</identifier><identifier>PMID: 33522822</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2021-02, Vol.21 (3), p.1400-1411</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-d222ce7ac7e625e214e83592afdfb6820a0fbb326228ea5ede428b544111aaaf3</citedby><cites>FETCH-LOGICAL-a348t-d222ce7ac7e625e214e83592afdfb6820a0fbb326228ea5ede428b544111aaaf3</cites><orcidid>0000-0003-4308-3128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c04209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c04209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33522822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tai, Chun-San</creatorcontrib><creatorcontrib>Lan, Kuan-Chun</creatorcontrib><creatorcontrib>Wang, Erick</creatorcontrib><creatorcontrib>Chan, Fu-Erh</creatorcontrib><creatorcontrib>Hsieh, Ming-Ting</creatorcontrib><creatorcontrib>Huang, Ching-Wen</creatorcontrib><creatorcontrib>Weng, Shun-Long</creatorcontrib><creatorcontrib>Chen, Po-Chun</creatorcontrib><creatorcontrib>Chen, Wen Liang</creatorcontrib><title>Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EolD4A4T8Aym2MzRZVm0ZpBYWDNvoxXkGV0kc2U6lsuPPSemwRLL0vLjnSvcQcsPZiDPB70C6UQONqdD7EZMsEiw7IRc8DlmQZJk4Pf7TaEAunVsxxrIwZudkEIaxEKkQF-Tnua_wpjWfFtqvDQVHJ9ZrpaWGii61tAabtbamqbHxVBlLJ1J2FjzSD-06qPQ3eG0aahRdogfXP-3oDNdYmfYPWmugr7ruqmNwPl3S2aaBWkt3Rc4UVA6v93dI3u_nb9PHYPHy8DSdLAIIo9QHpRBC4hjkGBMRo-ARpmGcCVClKpJUMGCqKEKR9MMQYiwxEmkRRxHnHABUOCTRrref5JxFlbdW12A3OWf51mjeG80PRvO90R673WFtV9RYHqGDwj7AdoEtvjKdbfoV_3f-Aiq8ibU</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Tai, Chun-San</creator><creator>Lan, Kuan-Chun</creator><creator>Wang, Erick</creator><creator>Chan, Fu-Erh</creator><creator>Hsieh, Ming-Ting</creator><creator>Huang, Ching-Wen</creator><creator>Weng, Shun-Long</creator><creator>Chen, Po-Chun</creator><creator>Chen, Wen Liang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4308-3128</orcidid></search><sort><creationdate>20210210</creationdate><title>Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics</title><author>Tai, Chun-San ; Lan, Kuan-Chun ; Wang, Erick ; Chan, Fu-Erh ; Hsieh, Ming-Ting ; Huang, Ching-Wen ; Weng, Shun-Long ; Chen, Po-Chun ; Chen, Wen Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-d222ce7ac7e625e214e83592afdfb6820a0fbb326228ea5ede428b544111aaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tai, Chun-San</creatorcontrib><creatorcontrib>Lan, Kuan-Chun</creatorcontrib><creatorcontrib>Wang, Erick</creatorcontrib><creatorcontrib>Chan, Fu-Erh</creatorcontrib><creatorcontrib>Hsieh, Ming-Ting</creatorcontrib><creatorcontrib>Huang, Ching-Wen</creatorcontrib><creatorcontrib>Weng, Shun-Long</creatorcontrib><creatorcontrib>Chen, Po-Chun</creatorcontrib><creatorcontrib>Chen, Wen Liang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tai, Chun-San</au><au>Lan, Kuan-Chun</au><au>Wang, Erick</au><au>Chan, Fu-Erh</au><au>Hsieh, Ming-Ting</au><au>Huang, Ching-Wen</au><au>Weng, Shun-Long</au><au>Chen, Po-Chun</au><au>Chen, Wen Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-02-10</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>1400</spage><epage>1411</epage><pages>1400-1411</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33522822</pmid><doi>10.1021/acs.nanolett.0c04209</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4308-3128</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2021-02, Vol.21 (3), p.1400-1411
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_acs_nanolett_0c04209
source American Chemical Society Journals
title Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotopography%20as%20Artificial%20Microenvironment%20for%20Accurate%20Visualization%20of%20Metastasis%20Development%20via%20Simulation%20of%20ECM%20Dynamics&rft.jtitle=Nano%20letters&rft.au=Tai,%20Chun-San&rft.date=2021-02-10&rft.volume=21&rft.issue=3&rft.spage=1400&rft.epage=1411&rft.pages=1400-1411&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c04209&rft_dat=%3Cacs_cross%3Ed99708716%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33522822&rfr_iscdi=true