Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition

Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-07, Vol.20 (7), p.5367-5375
Hauptverfasser: Nie, Chuanxiong, Stadtmüller, Marlena, Yang, Hua, Xia, Yi, Wolff, Thorsten, Cheng, Chong, Haag, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5375
container_issue 7
container_start_page 5367
container_title Nano letters
container_volume 20
creator Nie, Chuanxiong
Stadtmüller, Marlena
Yang, Hua
Xia, Yi
Wolff, Thorsten
Cheng, Chong
Haag, Rainer
description Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.
doi_str_mv 10.1021/acs.nanolett.0c01723
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_0c01723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c643110585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwjlB1LGr6RZogpKRQULCtvIdpzGpYkj2xHK35OqjyWrGY3uudIchO4xTDEQ_CiUnzaisTsdwhQU4JTQCzTGnEKcZBm5PO8zNkI33m8BIKMcrtGIEo55lrIxevtszU8fvQ9FPrhOhc5pH_2aUEULbWsdXB_XIqjKNJtobVu7caKt-qi0Lvo2rvPRsqmMNMHY5hZdlWLn9d1xTtDXy_N6_hqvPhbL-dMqFiShIVZA0hmROCm4YpACcCGzAvRwKMuEKia4UCzBMwFa84SVJFMcSsIlk1xCQSeIHXqVs947XeatM7VwfY4h37vJBzf5yU1-dDNgDwes7WStizN0kjEE4BDY41vbuWb44v_OPyD5dW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</title><source>ACS Publications</source><source>MEDLINE</source><creator>Nie, Chuanxiong ; Stadtmüller, Marlena ; Yang, Hua ; Xia, Yi ; Wolff, Thorsten ; Cheng, Chong ; Haag, Rainer</creator><creatorcontrib>Nie, Chuanxiong ; Stadtmüller, Marlena ; Yang, Hua ; Xia, Yi ; Wolff, Thorsten ; Cheng, Chong ; Haag, Rainer</creatorcontrib><description>Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced &gt;99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c01723</identifier><identifier>PMID: 32515974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiviral Agents - pharmacology ; Betacoronavirus - drug effects ; Betacoronavirus - ultrastructure ; Binding Sites ; Coronavirus Infections - drug therapy ; Coronavirus Infections - virology ; COVID-19 ; Drug Design ; Humans ; Influenza A virus - drug effects ; Influenza A virus - ultrastructure ; Microscopy, Electron ; Models, Biological ; Nanostructures - ultrastructure ; Nanotechnology ; Pandemics ; Pneumonia, Viral - drug therapy ; Pneumonia, Viral - virology ; SARS-CoV-2 ; Spike Glycoprotein, Coronavirus - drug effects ; Spike Glycoprotein, Coronavirus - ultrastructure ; Virus Internalization - drug effects</subject><ispartof>Nano letters, 2020-07, Vol.20 (7), p.5367-5375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</citedby><cites>FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</cites><orcidid>0000-0003-3840-162X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c01723$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c01723$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32515974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Chuanxiong</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><title>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced &gt;99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.</description><subject>Antiviral Agents - pharmacology</subject><subject>Betacoronavirus - drug effects</subject><subject>Betacoronavirus - ultrastructure</subject><subject>Binding Sites</subject><subject>Coronavirus Infections - drug therapy</subject><subject>Coronavirus Infections - virology</subject><subject>COVID-19</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Influenza A virus - drug effects</subject><subject>Influenza A virus - ultrastructure</subject><subject>Microscopy, Electron</subject><subject>Models, Biological</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Pandemics</subject><subject>Pneumonia, Viral - drug therapy</subject><subject>Pneumonia, Viral - virology</subject><subject>SARS-CoV-2</subject><subject>Spike Glycoprotein, Coronavirus - drug effects</subject><subject>Spike Glycoprotein, Coronavirus - ultrastructure</subject><subject>Virus Internalization - drug effects</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwjlB1LGr6RZogpKRQULCtvIdpzGpYkj2xHK35OqjyWrGY3uudIchO4xTDEQ_CiUnzaisTsdwhQU4JTQCzTGnEKcZBm5PO8zNkI33m8BIKMcrtGIEo55lrIxevtszU8fvQ9FPrhOhc5pH_2aUEULbWsdXB_XIqjKNJtobVu7caKt-qi0Lvo2rvPRsqmMNMHY5hZdlWLn9d1xTtDXy_N6_hqvPhbL-dMqFiShIVZA0hmROCm4YpACcCGzAvRwKMuEKia4UCzBMwFa84SVJFMcSsIlk1xCQSeIHXqVs947XeatM7VwfY4h37vJBzf5yU1-dDNgDwes7WStizN0kjEE4BDY41vbuWb44v_OPyD5dW0</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Nie, Chuanxiong</creator><creator>Stadtmüller, Marlena</creator><creator>Yang, Hua</creator><creator>Xia, Yi</creator><creator>Wolff, Thorsten</creator><creator>Cheng, Chong</creator><creator>Haag, Rainer</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3840-162X</orcidid></search><sort><creationdate>20200708</creationdate><title>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</title><author>Nie, Chuanxiong ; Stadtmüller, Marlena ; Yang, Hua ; Xia, Yi ; Wolff, Thorsten ; Cheng, Chong ; Haag, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiviral Agents - pharmacology</topic><topic>Betacoronavirus - drug effects</topic><topic>Betacoronavirus - ultrastructure</topic><topic>Binding Sites</topic><topic>Coronavirus Infections - drug therapy</topic><topic>Coronavirus Infections - virology</topic><topic>COVID-19</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Influenza A virus - drug effects</topic><topic>Influenza A virus - ultrastructure</topic><topic>Microscopy, Electron</topic><topic>Models, Biological</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Pandemics</topic><topic>Pneumonia, Viral - drug therapy</topic><topic>Pneumonia, Viral - virology</topic><topic>SARS-CoV-2</topic><topic>Spike Glycoprotein, Coronavirus - drug effects</topic><topic>Spike Glycoprotein, Coronavirus - ultrastructure</topic><topic>Virus Internalization - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Chuanxiong</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Chuanxiong</au><au>Stadtmüller, Marlena</au><au>Yang, Hua</au><au>Xia, Yi</au><au>Wolff, Thorsten</au><au>Cheng, Chong</au><au>Haag, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-07-08</date><risdate>2020</risdate><volume>20</volume><issue>7</issue><spage>5367</spage><epage>5375</epage><pages>5367-5375</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced &gt;99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32515974</pmid><doi>10.1021/acs.nanolett.0c01723</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3840-162X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-07, Vol.20 (7), p.5367-5375
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_acs_nanolett_0c01723
source ACS Publications; MEDLINE
subjects Antiviral Agents - pharmacology
Betacoronavirus - drug effects
Betacoronavirus - ultrastructure
Binding Sites
Coronavirus Infections - drug therapy
Coronavirus Infections - virology
COVID-19
Drug Design
Humans
Influenza A virus - drug effects
Influenza A virus - ultrastructure
Microscopy, Electron
Models, Biological
Nanostructures - ultrastructure
Nanotechnology
Pandemics
Pneumonia, Viral - drug therapy
Pneumonia, Viral - virology
SARS-CoV-2
Spike Glycoprotein, Coronavirus - drug effects
Spike Glycoprotein, Coronavirus - ultrastructure
Virus Internalization - drug effects
title Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiky%20Nanostructures%20with%20Geometry-matching%20Topography%20for%20Virus%20Inhibition&rft.jtitle=Nano%20letters&rft.au=Nie,%20Chuanxiong&rft.date=2020-07-08&rft.volume=20&rft.issue=7&rft.spage=5367&rft.epage=5375&rft.pages=5367-5375&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c01723&rft_dat=%3Cacs_cross%3Ec643110585%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32515974&rfr_iscdi=true