Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition
Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonst...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-07, Vol.20 (7), p.5367-5375 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5375 |
---|---|
container_issue | 7 |
container_start_page | 5367 |
container_title | Nano letters |
container_volume | 20 |
creator | Nie, Chuanxiong Stadtmüller, Marlena Yang, Hua Xia, Yi Wolff, Thorsten Cheng, Chong Haag, Rainer |
description | Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2. |
doi_str_mv | 10.1021/acs.nanolett.0c01723 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_0c01723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c643110585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwjlB1LGr6RZogpKRQULCtvIdpzGpYkj2xHK35OqjyWrGY3uudIchO4xTDEQ_CiUnzaisTsdwhQU4JTQCzTGnEKcZBm5PO8zNkI33m8BIKMcrtGIEo55lrIxevtszU8fvQ9FPrhOhc5pH_2aUEULbWsdXB_XIqjKNJtobVu7caKt-qi0Lvo2rvPRsqmMNMHY5hZdlWLn9d1xTtDXy_N6_hqvPhbL-dMqFiShIVZA0hmROCm4YpACcCGzAvRwKMuEKia4UCzBMwFa84SVJFMcSsIlk1xCQSeIHXqVs947XeatM7VwfY4h37vJBzf5yU1-dDNgDwes7WStizN0kjEE4BDY41vbuWb44v_OPyD5dW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</title><source>ACS Publications</source><source>MEDLINE</source><creator>Nie, Chuanxiong ; Stadtmüller, Marlena ; Yang, Hua ; Xia, Yi ; Wolff, Thorsten ; Cheng, Chong ; Haag, Rainer</creator><creatorcontrib>Nie, Chuanxiong ; Stadtmüller, Marlena ; Yang, Hua ; Xia, Yi ; Wolff, Thorsten ; Cheng, Chong ; Haag, Rainer</creatorcontrib><description>Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c01723</identifier><identifier>PMID: 32515974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiviral Agents - pharmacology ; Betacoronavirus - drug effects ; Betacoronavirus - ultrastructure ; Binding Sites ; Coronavirus Infections - drug therapy ; Coronavirus Infections - virology ; COVID-19 ; Drug Design ; Humans ; Influenza A virus - drug effects ; Influenza A virus - ultrastructure ; Microscopy, Electron ; Models, Biological ; Nanostructures - ultrastructure ; Nanotechnology ; Pandemics ; Pneumonia, Viral - drug therapy ; Pneumonia, Viral - virology ; SARS-CoV-2 ; Spike Glycoprotein, Coronavirus - drug effects ; Spike Glycoprotein, Coronavirus - ultrastructure ; Virus Internalization - drug effects</subject><ispartof>Nano letters, 2020-07, Vol.20 (7), p.5367-5375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</citedby><cites>FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</cites><orcidid>0000-0003-3840-162X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c01723$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c01723$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32515974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Chuanxiong</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><title>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.</description><subject>Antiviral Agents - pharmacology</subject><subject>Betacoronavirus - drug effects</subject><subject>Betacoronavirus - ultrastructure</subject><subject>Binding Sites</subject><subject>Coronavirus Infections - drug therapy</subject><subject>Coronavirus Infections - virology</subject><subject>COVID-19</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Influenza A virus - drug effects</subject><subject>Influenza A virus - ultrastructure</subject><subject>Microscopy, Electron</subject><subject>Models, Biological</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Pandemics</subject><subject>Pneumonia, Viral - drug therapy</subject><subject>Pneumonia, Viral - virology</subject><subject>SARS-CoV-2</subject><subject>Spike Glycoprotein, Coronavirus - drug effects</subject><subject>Spike Glycoprotein, Coronavirus - ultrastructure</subject><subject>Virus Internalization - drug effects</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwjlB1LGr6RZogpKRQULCtvIdpzGpYkj2xHK35OqjyWrGY3uudIchO4xTDEQ_CiUnzaisTsdwhQU4JTQCzTGnEKcZBm5PO8zNkI33m8BIKMcrtGIEo55lrIxevtszU8fvQ9FPrhOhc5pH_2aUEULbWsdXB_XIqjKNJtobVu7caKt-qi0Lvo2rvPRsqmMNMHY5hZdlWLn9d1xTtDXy_N6_hqvPhbL-dMqFiShIVZA0hmROCm4YpACcCGzAvRwKMuEKia4UCzBMwFa84SVJFMcSsIlk1xCQSeIHXqVs947XeatM7VwfY4h37vJBzf5yU1-dDNgDwes7WStizN0kjEE4BDY41vbuWb44v_OPyD5dW0</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Nie, Chuanxiong</creator><creator>Stadtmüller, Marlena</creator><creator>Yang, Hua</creator><creator>Xia, Yi</creator><creator>Wolff, Thorsten</creator><creator>Cheng, Chong</creator><creator>Haag, Rainer</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3840-162X</orcidid></search><sort><creationdate>20200708</creationdate><title>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</title><author>Nie, Chuanxiong ; Stadtmüller, Marlena ; Yang, Hua ; Xia, Yi ; Wolff, Thorsten ; Cheng, Chong ; Haag, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-c02782b16d5c407005ab9d0e16dff63c4a5ac4618a0ee564f29c50f25b4b5b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiviral Agents - pharmacology</topic><topic>Betacoronavirus - drug effects</topic><topic>Betacoronavirus - ultrastructure</topic><topic>Binding Sites</topic><topic>Coronavirus Infections - drug therapy</topic><topic>Coronavirus Infections - virology</topic><topic>COVID-19</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Influenza A virus - drug effects</topic><topic>Influenza A virus - ultrastructure</topic><topic>Microscopy, Electron</topic><topic>Models, Biological</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Pandemics</topic><topic>Pneumonia, Viral - drug therapy</topic><topic>Pneumonia, Viral - virology</topic><topic>SARS-CoV-2</topic><topic>Spike Glycoprotein, Coronavirus - drug effects</topic><topic>Spike Glycoprotein, Coronavirus - ultrastructure</topic><topic>Virus Internalization - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Chuanxiong</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Chuanxiong</au><au>Stadtmüller, Marlena</au><au>Yang, Hua</au><au>Xia, Yi</au><au>Wolff, Thorsten</au><au>Cheng, Chong</au><au>Haag, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-07-08</date><risdate>2020</risdate><volume>20</volume><issue>7</issue><spage>5367</spage><epage>5375</epage><pages>5367-5375</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32515974</pmid><doi>10.1021/acs.nanolett.0c01723</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3840-162X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2020-07, Vol.20 (7), p.5367-5375 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_nanolett_0c01723 |
source | ACS Publications; MEDLINE |
subjects | Antiviral Agents - pharmacology Betacoronavirus - drug effects Betacoronavirus - ultrastructure Binding Sites Coronavirus Infections - drug therapy Coronavirus Infections - virology COVID-19 Drug Design Humans Influenza A virus - drug effects Influenza A virus - ultrastructure Microscopy, Electron Models, Biological Nanostructures - ultrastructure Nanotechnology Pandemics Pneumonia, Viral - drug therapy Pneumonia, Viral - virology SARS-CoV-2 Spike Glycoprotein, Coronavirus - drug effects Spike Glycoprotein, Coronavirus - ultrastructure Virus Internalization - drug effects |
title | Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiky%20Nanostructures%20with%20Geometry-matching%20Topography%20for%20Virus%20Inhibition&rft.jtitle=Nano%20letters&rft.au=Nie,%20Chuanxiong&rft.date=2020-07-08&rft.volume=20&rft.issue=7&rft.spage=5367&rft.epage=5375&rft.pages=5367-5375&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c01723&rft_dat=%3Cacs_cross%3Ec643110585%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32515974&rfr_iscdi=true |