Collective Mie Resonances for Directional On-Chip Nanolasers

A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-08, Vol.20 (8), p.5655-5661
Hauptverfasser: Hoang, Thanh Xuan, Ha, Son Tung, Pan, Zhenying, Phua, Wee Kee, Paniagua-Domínguez, Ramón, Png, Ching Eng, Chu, Hong-Son, Kuznetsov, Arseniy I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5661
container_issue 8
container_start_page 5655
container_title Nano letters
container_volume 20
creator Hoang, Thanh Xuan
Ha, Son Tung
Pan, Zhenying
Phua, Wee Kee
Paniagua-Domínguez, Ramón
Png, Ching Eng
Chu, Hong-Son
Kuznetsov, Arseniy I
description A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie resonances and Van Hove singularities. On the basis of these concepts, we experimentally demonstrate a directional GaAs nanolaser at cryogenic temperatures with well-defined, in-plane emission, which, moreover, can be controlled by selective excitation. The lasing threshold is shown to be significantly reduced by optimizing the interparticle gap such that the optimal near-field confinement is achieved at a resonant wavelength corresponding to the highest gain of GaAs. We show that the lasing performance of this nanolaser is orders of magnitude better than a nanowire-based laser of the same dimensions. The present work provides design guidelines for high performance in-plane emission nanolasers, which may find applications in future photonic integrated circuits.
doi_str_mv 10.1021/acs.nanolett.0c00403
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_0c00403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b486583279</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-e97ce7ca35ad9b940a3c2f37206947563bd7ac2f93f81f1dd280960def541f713</originalsourceid><addsrcrecordid>eNqNkE1PwzAMQCMEYmPwDzj0jlqcpGkaiQsqn9JgEoJzlaWO6FSaKelA_HtSbeyIONly_Bz7EXJOIaPA6KU2Iet17zochgwMQA78gEyp4JAWSrHDfV7mE3ISwgoAFBdwTCacFcApk1NyVbmuQzO0n5g8tZi8YHBxqsGQWOeTm9aPj7HUJYs-rd7bdfI8fqoD-nBKjqzuAp7t4oy83d2-Vg_pfHH_WF3PU82ZGFJU0qA0mgvdqKXKQXPDLJcMCpVLUfBlI3WsKG5LamnTsBJUAQ1akVMrKZ-RfDvXeBeCR1uvffuh_XdNoR5l1FFG_Suj3smI2MUW-8Kls8G0GO_ao9GGKFgUwmJGIXaX_--u2kGPWiq36YeIwhYd11i5jY-6wt-7_QAsL4Ur</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collective Mie Resonances for Directional On-Chip Nanolasers</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Hoang, Thanh Xuan ; Ha, Son Tung ; Pan, Zhenying ; Phua, Wee Kee ; Paniagua-Domínguez, Ramón ; Png, Ching Eng ; Chu, Hong-Son ; Kuznetsov, Arseniy I</creator><creatorcontrib>Hoang, Thanh Xuan ; Ha, Son Tung ; Pan, Zhenying ; Phua, Wee Kee ; Paniagua-Domínguez, Ramón ; Png, Ching Eng ; Chu, Hong-Son ; Kuznetsov, Arseniy I</creatorcontrib><description>A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie resonances and Van Hove singularities. On the basis of these concepts, we experimentally demonstrate a directional GaAs nanolaser at cryogenic temperatures with well-defined, in-plane emission, which, moreover, can be controlled by selective excitation. The lasing threshold is shown to be significantly reduced by optimizing the interparticle gap such that the optimal near-field confinement is achieved at a resonant wavelength corresponding to the highest gain of GaAs. We show that the lasing performance of this nanolaser is orders of magnitude better than a nanowire-based laser of the same dimensions. The present work provides design guidelines for high performance in-plane emission nanolasers, which may find applications in future photonic integrated circuits.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c00403</identifier><identifier>PMID: 32603127</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Nano letters, 2020-08, Vol.20 (8), p.5655-5661</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000562935200010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a325t-e97ce7ca35ad9b940a3c2f37206947563bd7ac2f93f81f1dd280960def541f713</citedby><cites>FETCH-LOGICAL-a325t-e97ce7ca35ad9b940a3c2f37206947563bd7ac2f93f81f1dd280960def541f713</cites><orcidid>0000-0002-5475-8365 ; 0000-0002-7622-8939 ; 0000-0001-7836-681X ; 0000-0003-1944-2258 ; 0000-0002-5231-6635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c00403$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c00403$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids></links><search><creatorcontrib>Hoang, Thanh Xuan</creatorcontrib><creatorcontrib>Ha, Son Tung</creatorcontrib><creatorcontrib>Pan, Zhenying</creatorcontrib><creatorcontrib>Phua, Wee Kee</creatorcontrib><creatorcontrib>Paniagua-Domínguez, Ramón</creatorcontrib><creatorcontrib>Png, Ching Eng</creatorcontrib><creatorcontrib>Chu, Hong-Son</creatorcontrib><creatorcontrib>Kuznetsov, Arseniy I</creatorcontrib><title>Collective Mie Resonances for Directional On-Chip Nanolasers</title><title>Nano letters</title><addtitle>NANO LETT</addtitle><addtitle>Nano Lett</addtitle><description>A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie resonances and Van Hove singularities. On the basis of these concepts, we experimentally demonstrate a directional GaAs nanolaser at cryogenic temperatures with well-defined, in-plane emission, which, moreover, can be controlled by selective excitation. The lasing threshold is shown to be significantly reduced by optimizing the interparticle gap such that the optimal near-field confinement is achieved at a resonant wavelength corresponding to the highest gain of GaAs. We show that the lasing performance of this nanolaser is orders of magnitude better than a nanowire-based laser of the same dimensions. The present work provides design guidelines for high performance in-plane emission nanolasers, which may find applications in future photonic integrated circuits.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1PwzAMQCMEYmPwDzj0jlqcpGkaiQsqn9JgEoJzlaWO6FSaKelA_HtSbeyIONly_Bz7EXJOIaPA6KU2Iet17zochgwMQA78gEyp4JAWSrHDfV7mE3ISwgoAFBdwTCacFcApk1NyVbmuQzO0n5g8tZi8YHBxqsGQWOeTm9aPj7HUJYs-rd7bdfI8fqoD-nBKjqzuAp7t4oy83d2-Vg_pfHH_WF3PU82ZGFJU0qA0mgvdqKXKQXPDLJcMCpVLUfBlI3WsKG5LamnTsBJUAQ1akVMrKZ-RfDvXeBeCR1uvffuh_XdNoR5l1FFG_Suj3smI2MUW-8Kls8G0GO_ao9GGKFgUwmJGIXaX_--u2kGPWiq36YeIwhYd11i5jY-6wt-7_QAsL4Ur</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Hoang, Thanh Xuan</creator><creator>Ha, Son Tung</creator><creator>Pan, Zhenying</creator><creator>Phua, Wee Kee</creator><creator>Paniagua-Domínguez, Ramón</creator><creator>Png, Ching Eng</creator><creator>Chu, Hong-Son</creator><creator>Kuznetsov, Arseniy I</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5475-8365</orcidid><orcidid>https://orcid.org/0000-0002-7622-8939</orcidid><orcidid>https://orcid.org/0000-0001-7836-681X</orcidid><orcidid>https://orcid.org/0000-0003-1944-2258</orcidid><orcidid>https://orcid.org/0000-0002-5231-6635</orcidid></search><sort><creationdate>20200812</creationdate><title>Collective Mie Resonances for Directional On-Chip Nanolasers</title><author>Hoang, Thanh Xuan ; Ha, Son Tung ; Pan, Zhenying ; Phua, Wee Kee ; Paniagua-Domínguez, Ramón ; Png, Ching Eng ; Chu, Hong-Son ; Kuznetsov, Arseniy I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-e97ce7ca35ad9b940a3c2f37206947563bd7ac2f93f81f1dd280960def541f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Thanh Xuan</creatorcontrib><creatorcontrib>Ha, Son Tung</creatorcontrib><creatorcontrib>Pan, Zhenying</creatorcontrib><creatorcontrib>Phua, Wee Kee</creatorcontrib><creatorcontrib>Paniagua-Domínguez, Ramón</creatorcontrib><creatorcontrib>Png, Ching Eng</creatorcontrib><creatorcontrib>Chu, Hong-Son</creatorcontrib><creatorcontrib>Kuznetsov, Arseniy I</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoang, Thanh Xuan</au><au>Ha, Son Tung</au><au>Pan, Zhenying</au><au>Phua, Wee Kee</au><au>Paniagua-Domínguez, Ramón</au><au>Png, Ching Eng</au><au>Chu, Hong-Son</au><au>Kuznetsov, Arseniy I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective Mie Resonances for Directional On-Chip Nanolasers</atitle><jtitle>Nano letters</jtitle><stitle>NANO LETT</stitle><addtitle>Nano Lett</addtitle><date>2020-08-12</date><risdate>2020</risdate><volume>20</volume><issue>8</issue><spage>5655</spage><epage>5661</epage><pages>5655-5661</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie resonances and Van Hove singularities. On the basis of these concepts, we experimentally demonstrate a directional GaAs nanolaser at cryogenic temperatures with well-defined, in-plane emission, which, moreover, can be controlled by selective excitation. The lasing threshold is shown to be significantly reduced by optimizing the interparticle gap such that the optimal near-field confinement is achieved at a resonant wavelength corresponding to the highest gain of GaAs. We show that the lasing performance of this nanolaser is orders of magnitude better than a nanowire-based laser of the same dimensions. The present work provides design guidelines for high performance in-plane emission nanolasers, which may find applications in future photonic integrated circuits.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32603127</pmid><doi>10.1021/acs.nanolett.0c00403</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5475-8365</orcidid><orcidid>https://orcid.org/0000-0002-7622-8939</orcidid><orcidid>https://orcid.org/0000-0001-7836-681X</orcidid><orcidid>https://orcid.org/0000-0003-1944-2258</orcidid><orcidid>https://orcid.org/0000-0002-5231-6635</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-08, Vol.20 (8), p.5655-5661
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_acs_nanolett_0c00403
source ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Science & Technology - Other Topics
Technology
title Collective Mie Resonances for Directional On-Chip Nanolasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20Mie%20Resonances%20for%20Directional%20On-Chip%20Nanolasers&rft.jtitle=Nano%20letters&rft.au=Hoang,%20Thanh%20Xuan&rft.date=2020-08-12&rft.volume=20&rft.issue=8&rft.spage=5655&rft.epage=5661&rft.pages=5655-5661&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c00403&rft_dat=%3Cacs_cross%3Eb486583279%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32603127&rfr_iscdi=true