Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites

Two matrix-free polystyrene-grafted silica nanocomposite samples with graft chain lengths of 35 and 112 kg/mol are characterized by calorimetry and rheometry, and results are compared to neat polystyrenes of comparable molecular weights. The glass transition temperature T g of the nanocomposites is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2020-03, Vol.53 (6), p.2123-2135
Hauptverfasser: Sakib, Nazam, Koh, Yung P, Huang, Yucheng, Mongcopa, Katrina Irene S, Le, Amy N, Benicewicz, Brian C, Krishnamoorti, Ramanan, Simon, Sindee L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2135
container_issue 6
container_start_page 2123
container_title Macromolecules
container_volume 53
creator Sakib, Nazam
Koh, Yung P
Huang, Yucheng
Mongcopa, Katrina Irene S
Le, Amy N
Benicewicz, Brian C
Krishnamoorti, Ramanan
Simon, Sindee L
description Two matrix-free polystyrene-grafted silica nanocomposite samples with graft chain lengths of 35 and 112 kg/mol are characterized by calorimetry and rheometry, and results are compared to neat polystyrenes of comparable molecular weights. The glass transition temperature T g of the nanocomposites is found to be approximately 1 to 2 K higher than that of the neat materials, whereas the absolute heat capacity is approximately 4–7% lower in the glassy and liquid states. The step change in heat capacity ΔC p at T g is 15% lower for the nanocomposites, consistent with an immobilized glassy layer of approximately 2 nm. The linear viscoelastic behavior of the nanocomposite samples differs significantly compared to their neat analogs in several ways: first, the G′ versus ω curves shift toward lower frequencies by approximately one decade due to the increase in the glass transition temperature; second, terminal flow behavior is absent; third, the rubbery plateau moduli (G N°) decreases by 7% for the 35 kg/mol grafted particles and increases by approximately two and a half-fold for the 112 kg/mol grafted particles; and fourth, the glassy modulus increases approximately 4% consistent with hydrodynamic reinforcement. On the other hand, the magnitude of the rubbery modulus is attributed to two effects, hydrodynamic reinforcement and a change in the effective entanglement density, which is governed by corona interpenetration coupled with the silica particles acting as physical entanglement points.
doi_str_mv 10.1021/acs.macromol.9b02127
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_9b02127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a497854344</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-edceecf27f4fdc4fb27b631a87f771aeef9a64f3360b1b5556bbd612a3e71f553</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EEqHwByzyAwke4rhZVhWUSmUQlHX07DzTVElc2WGRv8dVy5bVG--V7iHkntGcUc4ewIS8B-Nd77q80nHF1QVJmOQ0k3MhL0lCKS-yilfqmtyEsKeUMVmIhLxsd-h76FIYmvRjh65z362J82KAbgptSJ1N311sx8njgNnKgx2xST_bLv6lrzA44_qDC-2I4ZZcWegC3p3rjHw9PW6Xz9nmbbVeLjYZiKoaM2wMorFc2cI2prCaK10KBnNllWKAaCsoCytESTXTUspS66ZkHAQqZqUUM1KcfGPmEDza-uDbHvxUM1ofkdQRSf2HpD4jiTJ6kh2ve_fjY8bwv-QXK2xrEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites</title><source>American Chemical Society Journals</source><creator>Sakib, Nazam ; Koh, Yung P ; Huang, Yucheng ; Mongcopa, Katrina Irene S ; Le, Amy N ; Benicewicz, Brian C ; Krishnamoorti, Ramanan ; Simon, Sindee L</creator><creatorcontrib>Sakib, Nazam ; Koh, Yung P ; Huang, Yucheng ; Mongcopa, Katrina Irene S ; Le, Amy N ; Benicewicz, Brian C ; Krishnamoorti, Ramanan ; Simon, Sindee L</creatorcontrib><description>Two matrix-free polystyrene-grafted silica nanocomposite samples with graft chain lengths of 35 and 112 kg/mol are characterized by calorimetry and rheometry, and results are compared to neat polystyrenes of comparable molecular weights. The glass transition temperature T g of the nanocomposites is found to be approximately 1 to 2 K higher than that of the neat materials, whereas the absolute heat capacity is approximately 4–7% lower in the glassy and liquid states. The step change in heat capacity ΔC p at T g is 15% lower for the nanocomposites, consistent with an immobilized glassy layer of approximately 2 nm. The linear viscoelastic behavior of the nanocomposite samples differs significantly compared to their neat analogs in several ways: first, the G′ versus ω curves shift toward lower frequencies by approximately one decade due to the increase in the glass transition temperature; second, terminal flow behavior is absent; third, the rubbery plateau moduli (G N°) decreases by 7% for the 35 kg/mol grafted particles and increases by approximately two and a half-fold for the 112 kg/mol grafted particles; and fourth, the glassy modulus increases approximately 4% consistent with hydrodynamic reinforcement. On the other hand, the magnitude of the rubbery modulus is attributed to two effects, hydrodynamic reinforcement and a change in the effective entanglement density, which is governed by corona interpenetration coupled with the silica particles acting as physical entanglement points.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.9b02127</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2020-03, Vol.53 (6), p.2123-2135</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-edceecf27f4fdc4fb27b631a87f771aeef9a64f3360b1b5556bbd612a3e71f553</citedby><cites>FETCH-LOGICAL-a399t-edceecf27f4fdc4fb27b631a87f771aeef9a64f3360b1b5556bbd612a3e71f553</cites><orcidid>0000-0003-4130-1232 ; 0000-0001-7498-2826 ; 0000-0002-2367-6199 ; 0000-0001-5831-502X ; 0000-0002-3991-6513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.9b02127$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.9b02127$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Sakib, Nazam</creatorcontrib><creatorcontrib>Koh, Yung P</creatorcontrib><creatorcontrib>Huang, Yucheng</creatorcontrib><creatorcontrib>Mongcopa, Katrina Irene S</creatorcontrib><creatorcontrib>Le, Amy N</creatorcontrib><creatorcontrib>Benicewicz, Brian C</creatorcontrib><creatorcontrib>Krishnamoorti, Ramanan</creatorcontrib><creatorcontrib>Simon, Sindee L</creatorcontrib><title>Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Two matrix-free polystyrene-grafted silica nanocomposite samples with graft chain lengths of 35 and 112 kg/mol are characterized by calorimetry and rheometry, and results are compared to neat polystyrenes of comparable molecular weights. The glass transition temperature T g of the nanocomposites is found to be approximately 1 to 2 K higher than that of the neat materials, whereas the absolute heat capacity is approximately 4–7% lower in the glassy and liquid states. The step change in heat capacity ΔC p at T g is 15% lower for the nanocomposites, consistent with an immobilized glassy layer of approximately 2 nm. The linear viscoelastic behavior of the nanocomposite samples differs significantly compared to their neat analogs in several ways: first, the G′ versus ω curves shift toward lower frequencies by approximately one decade due to the increase in the glass transition temperature; second, terminal flow behavior is absent; third, the rubbery plateau moduli (G N°) decreases by 7% for the 35 kg/mol grafted particles and increases by approximately two and a half-fold for the 112 kg/mol grafted particles; and fourth, the glassy modulus increases approximately 4% consistent with hydrodynamic reinforcement. On the other hand, the magnitude of the rubbery modulus is attributed to two effects, hydrodynamic reinforcement and a change in the effective entanglement density, which is governed by corona interpenetration coupled with the silica particles acting as physical entanglement points.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EEqHwByzyAwke4rhZVhWUSmUQlHX07DzTVElc2WGRv8dVy5bVG--V7iHkntGcUc4ewIS8B-Nd77q80nHF1QVJmOQ0k3MhL0lCKS-yilfqmtyEsKeUMVmIhLxsd-h76FIYmvRjh65z362J82KAbgptSJ1N311sx8njgNnKgx2xST_bLv6lrzA44_qDC-2I4ZZcWegC3p3rjHw9PW6Xz9nmbbVeLjYZiKoaM2wMorFc2cI2prCaK10KBnNllWKAaCsoCytESTXTUspS66ZkHAQqZqUUM1KcfGPmEDza-uDbHvxUM1ofkdQRSf2HpD4jiTJ6kh2ve_fjY8bwv-QXK2xrEA</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Sakib, Nazam</creator><creator>Koh, Yung P</creator><creator>Huang, Yucheng</creator><creator>Mongcopa, Katrina Irene S</creator><creator>Le, Amy N</creator><creator>Benicewicz, Brian C</creator><creator>Krishnamoorti, Ramanan</creator><creator>Simon, Sindee L</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4130-1232</orcidid><orcidid>https://orcid.org/0000-0001-7498-2826</orcidid><orcidid>https://orcid.org/0000-0002-2367-6199</orcidid><orcidid>https://orcid.org/0000-0001-5831-502X</orcidid><orcidid>https://orcid.org/0000-0002-3991-6513</orcidid></search><sort><creationdate>20200324</creationdate><title>Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites</title><author>Sakib, Nazam ; Koh, Yung P ; Huang, Yucheng ; Mongcopa, Katrina Irene S ; Le, Amy N ; Benicewicz, Brian C ; Krishnamoorti, Ramanan ; Simon, Sindee L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-edceecf27f4fdc4fb27b631a87f771aeef9a64f3360b1b5556bbd612a3e71f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakib, Nazam</creatorcontrib><creatorcontrib>Koh, Yung P</creatorcontrib><creatorcontrib>Huang, Yucheng</creatorcontrib><creatorcontrib>Mongcopa, Katrina Irene S</creatorcontrib><creatorcontrib>Le, Amy N</creatorcontrib><creatorcontrib>Benicewicz, Brian C</creatorcontrib><creatorcontrib>Krishnamoorti, Ramanan</creatorcontrib><creatorcontrib>Simon, Sindee L</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakib, Nazam</au><au>Koh, Yung P</au><au>Huang, Yucheng</au><au>Mongcopa, Katrina Irene S</au><au>Le, Amy N</au><au>Benicewicz, Brian C</au><au>Krishnamoorti, Ramanan</au><au>Simon, Sindee L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2020-03-24</date><risdate>2020</risdate><volume>53</volume><issue>6</issue><spage>2123</spage><epage>2135</epage><pages>2123-2135</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Two matrix-free polystyrene-grafted silica nanocomposite samples with graft chain lengths of 35 and 112 kg/mol are characterized by calorimetry and rheometry, and results are compared to neat polystyrenes of comparable molecular weights. The glass transition temperature T g of the nanocomposites is found to be approximately 1 to 2 K higher than that of the neat materials, whereas the absolute heat capacity is approximately 4–7% lower in the glassy and liquid states. The step change in heat capacity ΔC p at T g is 15% lower for the nanocomposites, consistent with an immobilized glassy layer of approximately 2 nm. The linear viscoelastic behavior of the nanocomposite samples differs significantly compared to their neat analogs in several ways: first, the G′ versus ω curves shift toward lower frequencies by approximately one decade due to the increase in the glass transition temperature; second, terminal flow behavior is absent; third, the rubbery plateau moduli (G N°) decreases by 7% for the 35 kg/mol grafted particles and increases by approximately two and a half-fold for the 112 kg/mol grafted particles; and fourth, the glassy modulus increases approximately 4% consistent with hydrodynamic reinforcement. On the other hand, the magnitude of the rubbery modulus is attributed to two effects, hydrodynamic reinforcement and a change in the effective entanglement density, which is governed by corona interpenetration coupled with the silica particles acting as physical entanglement points.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.9b02127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4130-1232</orcidid><orcidid>https://orcid.org/0000-0001-7498-2826</orcidid><orcidid>https://orcid.org/0000-0002-2367-6199</orcidid><orcidid>https://orcid.org/0000-0001-5831-502X</orcidid><orcidid>https://orcid.org/0000-0002-3991-6513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2020-03, Vol.53 (6), p.2123-2135
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_9b02127
source American Chemical Society Journals
title Thermal and Rheological Analysis of Polystyrene-Grafted Silica Nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Rheological%20Analysis%20of%20Polystyrene-Grafted%20Silica%20Nanocomposites&rft.jtitle=Macromolecules&rft.au=Sakib,%20Nazam&rft.date=2020-03-24&rft.volume=53&rft.issue=6&rft.spage=2123&rft.epage=2135&rft.pages=2123-2135&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.9b02127&rft_dat=%3Cacs_cross%3Ea497854344%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true