B(C6F5)3‑Catalyzed Group Transfer Polymerization of Acrylates Using Hydrosilane: Polymerization Mechanism, Applicable Monomers, and Synthesis of Well-Defined Acrylate Polymers

We demonstrated the B­(C6F5)3-catalyzed group transfer polymerization (GTP) of acrylate monomers with hydrosilane by the in situ formation of silyl ketene acetals (SKAs) as the initiator by the B­(C6F5)3-catalyzed 1,4-hydrosilylation of acrylate monomers and hydrosilane. In addition, this new GTP me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2019-02, Vol.52 (3), p.844-856
Hauptverfasser: Chen, Yougen, Jia, Qun, Ding, Yuansheng, Sato, Shin-ichiro, Xu, Liang, Zang, Chunyu, Shen, Xiande, Kakuchi, Toyoji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue 3
container_start_page 844
container_title Macromolecules
container_volume 52
creator Chen, Yougen
Jia, Qun
Ding, Yuansheng
Sato, Shin-ichiro
Xu, Liang
Zang, Chunyu
Shen, Xiande
Kakuchi, Toyoji
description We demonstrated the B­(C6F5)3-catalyzed group transfer polymerization (GTP) of acrylate monomers with hydrosilane by the in situ formation of silyl ketene acetals (SKAs) as the initiator by the B­(C6F5)3-catalyzed 1,4-hydrosilylation of acrylate monomers and hydrosilane. In addition, this new GTP method was clarified in terms of the polymerization mechanism, scope and limitation of the acrylate monomers, the livingness of the polymerization, and the synthesis of statistic and block acrylate copolymers and ω-end-functionalized acrylate polymers. A mechanism involving six elementary reactions was proposed based on the specified analysis of the 1,4-hydrosilylation reaction and the usual GTP using a Lewis acid catalyst. The B­(C6F5)3-catalyzed GTP using Me2PhSiH was applicable for not only various alkyl acrylates, such as the methyl, 2-ethylhexyl, cyclohexyl, and dicyclopentanyl acrylates, but also functional acrylates, such as the 2-methoxyethyl, 2-(2-ethoxyethoxy)­ethyl, tetrahydrofurfuryl, allyl, triisopropylsilyl, and 2-(triisopropylsiloxy)­ethyl acrylates. On the other hand, the isobornyl, tert-butyl, 2-methyl-2-adamantyl, 2-(dimethylamino)­ethyl, and 2-oxotetrahydrofuran-3-yl acrylates were unsuitable GTP monomers because they showed low or even no polymerization property due to the deactivation of the B­(C6F5)3 catalyst or the in situ produced SKA initiator. The livingness for the GTP of suitable acrylates using Me2PhSiH was verified by the kinetic studies, which was applied to the random and block copolymerizations of two different acrylate monomers. Finally, the ω-end-functionalization of the nucleophilic propagating end of poly­(n-butyl acrylate) was performed using electrophiles, such as benzaldehyde, N-benzylidene­methylamine, and N-benzylidene­benzylamine, as terminators.
doi_str_mv 10.1021/acs.macromol.8b02245
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_8b02245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b752484856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a329t-aa9d3fa83ff3e25703ceedf4fc5dfaf39d2a426636895dfefbc39d2e5a3743513</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEuXnBiy8BIkUx47bhl0JtEUqAokiltE0GYORY1d2uggrrsBRuBInIVHphgWrkd6892b0EXISs37MeHwBRehXUHhXOdMfLRnnidwhvVhyFsmRkLukxxhPopSnw31yEMIbY3EsE9EjX1en2WAiz8T3x2cGNZjmHUs69W69ogsPNij09MGZpkKv36HWzlKn6LjwjYEaA30K2r7QWVN6F7QBi5d_7XdYvILVoTqn49XK6AKWBumds641hXMKtqSPja1fMejQlT-jMdE1Km3bV7aXtq3hiOwpMAGPf-cheZrcLLJZNL-f3mbjeQSCp3UEkJZCwUgoJZDLIRMFYqkSVchSgRJpySHhg4EYjNJWQbUsOg0liGEiZCwOSbLpbbmG4FHlK68r8E0es7zDnrfY8y32_Bd7G2ObWLd9c2tv2yf_j_wAGWOQIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>B(C6F5)3‑Catalyzed Group Transfer Polymerization of Acrylates Using Hydrosilane: Polymerization Mechanism, Applicable Monomers, and Synthesis of Well-Defined Acrylate Polymers</title><source>ACS Publications</source><creator>Chen, Yougen ; Jia, Qun ; Ding, Yuansheng ; Sato, Shin-ichiro ; Xu, Liang ; Zang, Chunyu ; Shen, Xiande ; Kakuchi, Toyoji</creator><creatorcontrib>Chen, Yougen ; Jia, Qun ; Ding, Yuansheng ; Sato, Shin-ichiro ; Xu, Liang ; Zang, Chunyu ; Shen, Xiande ; Kakuchi, Toyoji</creatorcontrib><description>We demonstrated the B­(C6F5)3-catalyzed group transfer polymerization (GTP) of acrylate monomers with hydrosilane by the in situ formation of silyl ketene acetals (SKAs) as the initiator by the B­(C6F5)3-catalyzed 1,4-hydrosilylation of acrylate monomers and hydrosilane. In addition, this new GTP method was clarified in terms of the polymerization mechanism, scope and limitation of the acrylate monomers, the livingness of the polymerization, and the synthesis of statistic and block acrylate copolymers and ω-end-functionalized acrylate polymers. A mechanism involving six elementary reactions was proposed based on the specified analysis of the 1,4-hydrosilylation reaction and the usual GTP using a Lewis acid catalyst. The B­(C6F5)3-catalyzed GTP using Me2PhSiH was applicable for not only various alkyl acrylates, such as the methyl, 2-ethylhexyl, cyclohexyl, and dicyclopentanyl acrylates, but also functional acrylates, such as the 2-methoxyethyl, 2-(2-ethoxyethoxy)­ethyl, tetrahydrofurfuryl, allyl, triisopropylsilyl, and 2-(triisopropylsiloxy)­ethyl acrylates. On the other hand, the isobornyl, tert-butyl, 2-methyl-2-adamantyl, 2-(dimethylamino)­ethyl, and 2-oxotetrahydrofuran-3-yl acrylates were unsuitable GTP monomers because they showed low or even no polymerization property due to the deactivation of the B­(C6F5)3 catalyst or the in situ produced SKA initiator. The livingness for the GTP of suitable acrylates using Me2PhSiH was verified by the kinetic studies, which was applied to the random and block copolymerizations of two different acrylate monomers. Finally, the ω-end-functionalization of the nucleophilic propagating end of poly­(n-butyl acrylate) was performed using electrophiles, such as benzaldehyde, N-benzylidene­methylamine, and N-benzylidene­benzylamine, as terminators.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.8b02245</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2019-02, Vol.52 (3), p.844-856</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a329t-aa9d3fa83ff3e25703ceedf4fc5dfaf39d2a426636895dfefbc39d2e5a3743513</citedby><cites>FETCH-LOGICAL-a329t-aa9d3fa83ff3e25703ceedf4fc5dfaf39d2a426636895dfefbc39d2e5a3743513</cites><orcidid>0000-0002-1882-8418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.8b02245$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.8b02245$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chen, Yougen</creatorcontrib><creatorcontrib>Jia, Qun</creatorcontrib><creatorcontrib>Ding, Yuansheng</creatorcontrib><creatorcontrib>Sato, Shin-ichiro</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Zang, Chunyu</creatorcontrib><creatorcontrib>Shen, Xiande</creatorcontrib><creatorcontrib>Kakuchi, Toyoji</creatorcontrib><title>B(C6F5)3‑Catalyzed Group Transfer Polymerization of Acrylates Using Hydrosilane: Polymerization Mechanism, Applicable Monomers, and Synthesis of Well-Defined Acrylate Polymers</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>We demonstrated the B­(C6F5)3-catalyzed group transfer polymerization (GTP) of acrylate monomers with hydrosilane by the in situ formation of silyl ketene acetals (SKAs) as the initiator by the B­(C6F5)3-catalyzed 1,4-hydrosilylation of acrylate monomers and hydrosilane. In addition, this new GTP method was clarified in terms of the polymerization mechanism, scope and limitation of the acrylate monomers, the livingness of the polymerization, and the synthesis of statistic and block acrylate copolymers and ω-end-functionalized acrylate polymers. A mechanism involving six elementary reactions was proposed based on the specified analysis of the 1,4-hydrosilylation reaction and the usual GTP using a Lewis acid catalyst. The B­(C6F5)3-catalyzed GTP using Me2PhSiH was applicable for not only various alkyl acrylates, such as the methyl, 2-ethylhexyl, cyclohexyl, and dicyclopentanyl acrylates, but also functional acrylates, such as the 2-methoxyethyl, 2-(2-ethoxyethoxy)­ethyl, tetrahydrofurfuryl, allyl, triisopropylsilyl, and 2-(triisopropylsiloxy)­ethyl acrylates. On the other hand, the isobornyl, tert-butyl, 2-methyl-2-adamantyl, 2-(dimethylamino)­ethyl, and 2-oxotetrahydrofuran-3-yl acrylates were unsuitable GTP monomers because they showed low or even no polymerization property due to the deactivation of the B­(C6F5)3 catalyst or the in situ produced SKA initiator. The livingness for the GTP of suitable acrylates using Me2PhSiH was verified by the kinetic studies, which was applied to the random and block copolymerizations of two different acrylate monomers. Finally, the ω-end-functionalization of the nucleophilic propagating end of poly­(n-butyl acrylate) was performed using electrophiles, such as benzaldehyde, N-benzylidene­methylamine, and N-benzylidene­benzylamine, as terminators.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEuXnBiy8BIkUx47bhl0JtEUqAokiltE0GYORY1d2uggrrsBRuBInIVHphgWrkd6892b0EXISs37MeHwBRehXUHhXOdMfLRnnidwhvVhyFsmRkLukxxhPopSnw31yEMIbY3EsE9EjX1en2WAiz8T3x2cGNZjmHUs69W69ogsPNij09MGZpkKv36HWzlKn6LjwjYEaA30K2r7QWVN6F7QBi5d_7XdYvILVoTqn49XK6AKWBumds641hXMKtqSPja1fMejQlT-jMdE1Km3bV7aXtq3hiOwpMAGPf-cheZrcLLJZNL-f3mbjeQSCp3UEkJZCwUgoJZDLIRMFYqkSVchSgRJpySHhg4EYjNJWQbUsOg0liGEiZCwOSbLpbbmG4FHlK68r8E0es7zDnrfY8y32_Bd7G2ObWLd9c2tv2yf_j_wAGWOQIA</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Chen, Yougen</creator><creator>Jia, Qun</creator><creator>Ding, Yuansheng</creator><creator>Sato, Shin-ichiro</creator><creator>Xu, Liang</creator><creator>Zang, Chunyu</creator><creator>Shen, Xiande</creator><creator>Kakuchi, Toyoji</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1882-8418</orcidid></search><sort><creationdate>20190212</creationdate><title>B(C6F5)3‑Catalyzed Group Transfer Polymerization of Acrylates Using Hydrosilane: Polymerization Mechanism, Applicable Monomers, and Synthesis of Well-Defined Acrylate Polymers</title><author>Chen, Yougen ; Jia, Qun ; Ding, Yuansheng ; Sato, Shin-ichiro ; Xu, Liang ; Zang, Chunyu ; Shen, Xiande ; Kakuchi, Toyoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a329t-aa9d3fa83ff3e25703ceedf4fc5dfaf39d2a426636895dfefbc39d2e5a3743513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yougen</creatorcontrib><creatorcontrib>Jia, Qun</creatorcontrib><creatorcontrib>Ding, Yuansheng</creatorcontrib><creatorcontrib>Sato, Shin-ichiro</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Zang, Chunyu</creatorcontrib><creatorcontrib>Shen, Xiande</creatorcontrib><creatorcontrib>Kakuchi, Toyoji</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yougen</au><au>Jia, Qun</au><au>Ding, Yuansheng</au><au>Sato, Shin-ichiro</au><au>Xu, Liang</au><au>Zang, Chunyu</au><au>Shen, Xiande</au><au>Kakuchi, Toyoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>B(C6F5)3‑Catalyzed Group Transfer Polymerization of Acrylates Using Hydrosilane: Polymerization Mechanism, Applicable Monomers, and Synthesis of Well-Defined Acrylate Polymers</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2019-02-12</date><risdate>2019</risdate><volume>52</volume><issue>3</issue><spage>844</spage><epage>856</epage><pages>844-856</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>We demonstrated the B­(C6F5)3-catalyzed group transfer polymerization (GTP) of acrylate monomers with hydrosilane by the in situ formation of silyl ketene acetals (SKAs) as the initiator by the B­(C6F5)3-catalyzed 1,4-hydrosilylation of acrylate monomers and hydrosilane. In addition, this new GTP method was clarified in terms of the polymerization mechanism, scope and limitation of the acrylate monomers, the livingness of the polymerization, and the synthesis of statistic and block acrylate copolymers and ω-end-functionalized acrylate polymers. A mechanism involving six elementary reactions was proposed based on the specified analysis of the 1,4-hydrosilylation reaction and the usual GTP using a Lewis acid catalyst. The B­(C6F5)3-catalyzed GTP using Me2PhSiH was applicable for not only various alkyl acrylates, such as the methyl, 2-ethylhexyl, cyclohexyl, and dicyclopentanyl acrylates, but also functional acrylates, such as the 2-methoxyethyl, 2-(2-ethoxyethoxy)­ethyl, tetrahydrofurfuryl, allyl, triisopropylsilyl, and 2-(triisopropylsiloxy)­ethyl acrylates. On the other hand, the isobornyl, tert-butyl, 2-methyl-2-adamantyl, 2-(dimethylamino)­ethyl, and 2-oxotetrahydrofuran-3-yl acrylates were unsuitable GTP monomers because they showed low or even no polymerization property due to the deactivation of the B­(C6F5)3 catalyst or the in situ produced SKA initiator. The livingness for the GTP of suitable acrylates using Me2PhSiH was verified by the kinetic studies, which was applied to the random and block copolymerizations of two different acrylate monomers. Finally, the ω-end-functionalization of the nucleophilic propagating end of poly­(n-butyl acrylate) was performed using electrophiles, such as benzaldehyde, N-benzylidene­methylamine, and N-benzylidene­benzylamine, as terminators.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.8b02245</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1882-8418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2019-02, Vol.52 (3), p.844-856
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_8b02245
source ACS Publications
title B(C6F5)3‑Catalyzed Group Transfer Polymerization of Acrylates Using Hydrosilane: Polymerization Mechanism, Applicable Monomers, and Synthesis of Well-Defined Acrylate Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B(C6F5)3%E2%80%91Catalyzed%20Group%20Transfer%20Polymerization%20of%20Acrylates%20Using%20Hydrosilane:%20Polymerization%20Mechanism,%20Applicable%20Monomers,%20and%20Synthesis%20of%20Well-Defined%20Acrylate%20Polymers&rft.jtitle=Macromolecules&rft.au=Chen,%20Yougen&rft.date=2019-02-12&rft.volume=52&rft.issue=3&rft.spage=844&rft.epage=856&rft.pages=844-856&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.8b02245&rft_dat=%3Cacs_cross%3Eb752484856%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true