Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment
Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to hydrogen bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templa...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2018-09, Vol.51 (18), p.7032-7043 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7043 |
---|---|
container_issue | 18 |
container_start_page | 7032 |
container_title | Macromolecules |
container_volume | 51 |
creator | Patyukova, Elena Rottreau, Taylor Evans, Robert Topham, Paul D Greenall, Martin J |
description | Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to hydrogen bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templates. However, current statistical thermodynamic models used in descriptions of microphase separation, such as the Flory–Huggins approach, do not take into account some important properties of hydrogen bonding, such as site specificity and cooperativity. In this combined theoretical and experimental study, a step is taken toward the development of a more complete theory of hydrogen bonding in polymers, using polyacrylamide as a model system. We begin by developing a set of association models to describe hydrogen bonding in amides. Both models with one association constant and two association constants are considered. This theory is used to fit IR spectroscopy data from acrylamide solutions in chloroform, thereby determining the model parameters. We find that models with two constants give better predictions of bond energy in the acrylamide dimer and more realistic asymptotic behavior of the association constants in the limit of high temperatures. At the end of the paper, we briefly discuss the question of the determination of the Flory–Huggins parameter for a diblock copolymer with one self-associating hydrogen bonding block and one non-hydrogen bonding block by means of fitting the scattering function in a disordered state. |
doi_str_mv | 10.1021/acs.macromol.8b01118 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_8b01118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b881951395</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-c50a5c9c4122b854458fe467b7cf96ff80aa4a826aef55ce8032229130df8ef3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmXwBhzyAi1OmrQptzKNDWkSl94rN01KpzaZ0iHRt6fTxpWTD_Zn-_8IeWaQMODsBfWUjKiDH_2QqAYYY-qGRExyiKVK5S2JALiIC17k9-Rhmg6wzEiRRqTczW3wnXH0zbu2dx0tuy6YDk-9d7R3tNRhHnDsW_NKqy_jw0zRtXTzczShH407PZI7i8Nknq51Rar3TbXexfvP7ce63MeY5vIUawkodaEF47xRUgiprBFZ3uTaFpm1ChAFKp6hsVJqoyDlnBcshdYqY9MVEZe1S8xpCsbWx-U-hrlmUJ8t1IuF-s9CfbWwYHDBzt2D_w5u-fF_5BfxPGSt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment</title><source>ACS Publications</source><creator>Patyukova, Elena ; Rottreau, Taylor ; Evans, Robert ; Topham, Paul D ; Greenall, Martin J</creator><creatorcontrib>Patyukova, Elena ; Rottreau, Taylor ; Evans, Robert ; Topham, Paul D ; Greenall, Martin J</creatorcontrib><description>Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to hydrogen bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templates. However, current statistical thermodynamic models used in descriptions of microphase separation, such as the Flory–Huggins approach, do not take into account some important properties of hydrogen bonding, such as site specificity and cooperativity. In this combined theoretical and experimental study, a step is taken toward the development of a more complete theory of hydrogen bonding in polymers, using polyacrylamide as a model system. We begin by developing a set of association models to describe hydrogen bonding in amides. Both models with one association constant and two association constants are considered. This theory is used to fit IR spectroscopy data from acrylamide solutions in chloroform, thereby determining the model parameters. We find that models with two constants give better predictions of bond energy in the acrylamide dimer and more realistic asymptotic behavior of the association constants in the limit of high temperatures. At the end of the paper, we briefly discuss the question of the determination of the Flory–Huggins parameter for a diblock copolymer with one self-associating hydrogen bonding block and one non-hydrogen bonding block by means of fitting the scattering function in a disordered state.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.8b01118</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2018-09, Vol.51 (18), p.7032-7043</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-c50a5c9c4122b854458fe467b7cf96ff80aa4a826aef55ce8032229130df8ef3</citedby><cites>FETCH-LOGICAL-a375t-c50a5c9c4122b854458fe467b7cf96ff80aa4a826aef55ce8032229130df8ef3</cites><orcidid>0000-0003-4791-7134 ; 0000-0003-1641-5107 ; 0000-0003-1471-201X ; 0000-0003-4152-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.8b01118$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.8b01118$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Patyukova, Elena</creatorcontrib><creatorcontrib>Rottreau, Taylor</creatorcontrib><creatorcontrib>Evans, Robert</creatorcontrib><creatorcontrib>Topham, Paul D</creatorcontrib><creatorcontrib>Greenall, Martin J</creatorcontrib><title>Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to hydrogen bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templates. However, current statistical thermodynamic models used in descriptions of microphase separation, such as the Flory–Huggins approach, do not take into account some important properties of hydrogen bonding, such as site specificity and cooperativity. In this combined theoretical and experimental study, a step is taken toward the development of a more complete theory of hydrogen bonding in polymers, using polyacrylamide as a model system. We begin by developing a set of association models to describe hydrogen bonding in amides. Both models with one association constant and two association constants are considered. This theory is used to fit IR spectroscopy data from acrylamide solutions in chloroform, thereby determining the model parameters. We find that models with two constants give better predictions of bond energy in the acrylamide dimer and more realistic asymptotic behavior of the association constants in the limit of high temperatures. At the end of the paper, we briefly discuss the question of the determination of the Flory–Huggins parameter for a diblock copolymer with one self-associating hydrogen bonding block and one non-hydrogen bonding block by means of fitting the scattering function in a disordered state.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmXwBhzyAi1OmrQptzKNDWkSl94rN01KpzaZ0iHRt6fTxpWTD_Zn-_8IeWaQMODsBfWUjKiDH_2QqAYYY-qGRExyiKVK5S2JALiIC17k9-Rhmg6wzEiRRqTczW3wnXH0zbu2dx0tuy6YDk-9d7R3tNRhHnDsW_NKqy_jw0zRtXTzczShH407PZI7i8Nknq51Rar3TbXexfvP7ce63MeY5vIUawkodaEF47xRUgiprBFZ3uTaFpm1ChAFKp6hsVJqoyDlnBcshdYqY9MVEZe1S8xpCsbWx-U-hrlmUJ8t1IuF-s9CfbWwYHDBzt2D_w5u-fF_5BfxPGSt</recordid><startdate>20180925</startdate><enddate>20180925</enddate><creator>Patyukova, Elena</creator><creator>Rottreau, Taylor</creator><creator>Evans, Robert</creator><creator>Topham, Paul D</creator><creator>Greenall, Martin J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4791-7134</orcidid><orcidid>https://orcid.org/0000-0003-1641-5107</orcidid><orcidid>https://orcid.org/0000-0003-1471-201X</orcidid><orcidid>https://orcid.org/0000-0003-4152-6976</orcidid></search><sort><creationdate>20180925</creationdate><title>Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment</title><author>Patyukova, Elena ; Rottreau, Taylor ; Evans, Robert ; Topham, Paul D ; Greenall, Martin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-c50a5c9c4122b854458fe467b7cf96ff80aa4a826aef55ce8032229130df8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patyukova, Elena</creatorcontrib><creatorcontrib>Rottreau, Taylor</creatorcontrib><creatorcontrib>Evans, Robert</creatorcontrib><creatorcontrib>Topham, Paul D</creatorcontrib><creatorcontrib>Greenall, Martin J</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patyukova, Elena</au><au>Rottreau, Taylor</au><au>Evans, Robert</au><au>Topham, Paul D</au><au>Greenall, Martin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2018-09-25</date><risdate>2018</risdate><volume>51</volume><issue>18</issue><spage>7032</spage><epage>7043</epage><pages>7032-7043</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to hydrogen bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templates. However, current statistical thermodynamic models used in descriptions of microphase separation, such as the Flory–Huggins approach, do not take into account some important properties of hydrogen bonding, such as site specificity and cooperativity. In this combined theoretical and experimental study, a step is taken toward the development of a more complete theory of hydrogen bonding in polymers, using polyacrylamide as a model system. We begin by developing a set of association models to describe hydrogen bonding in amides. Both models with one association constant and two association constants are considered. This theory is used to fit IR spectroscopy data from acrylamide solutions in chloroform, thereby determining the model parameters. We find that models with two constants give better predictions of bond energy in the acrylamide dimer and more realistic asymptotic behavior of the association constants in the limit of high temperatures. At the end of the paper, we briefly discuss the question of the determination of the Flory–Huggins parameter for a diblock copolymer with one self-associating hydrogen bonding block and one non-hydrogen bonding block by means of fitting the scattering function in a disordered state.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.8b01118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4791-7134</orcidid><orcidid>https://orcid.org/0000-0003-1641-5107</orcidid><orcidid>https://orcid.org/0000-0003-1471-201X</orcidid><orcidid>https://orcid.org/0000-0003-4152-6976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 2018-09, Vol.51 (18), p.7032-7043 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_macromol_8b01118 |
source | ACS Publications |
title | Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Bonding%20Aggregation%20in%20Acrylamide:%20Theory%20and%20Experiment&rft.jtitle=Macromolecules&rft.au=Patyukova,%20Elena&rft.date=2018-09-25&rft.volume=51&rft.issue=18&rft.spage=7032&rft.epage=7043&rft.pages=7032-7043&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.8b01118&rft_dat=%3Cacs_cross%3Eb881951395%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |