Unique Structural Characteristics of Graft-Type Proton-Exchange Membranes Using SANS Partial Scattering Function Analysis

The partial scattering function analysis was applied to determine the exact structure of radiation-grafted proton-exchange membranes, made of poly­(styrenesulfonic acid)-grafted poly­(ethylene-co-tetrafluoroethylene) (ETFE-g-PSSA). Hydrated ETFE-g-PSSA membranes were treated as a three-component sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2022-08, Vol.55 (16), p.7100-7109
Hauptverfasser: Zhao, Yue, Yoshimura, Kimio, Sawada, Shinichi, Motegi, Toshinori, Hiroki, Akihiro, Radulescu, Aurel, Maekawa, Yasunari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7109
container_issue 16
container_start_page 7100
container_title Macromolecules
container_volume 55
creator Zhao, Yue
Yoshimura, Kimio
Sawada, Shinichi
Motegi, Toshinori
Hiroki, Akihiro
Radulescu, Aurel
Maekawa, Yasunari
description The partial scattering function analysis was applied to determine the exact structure of radiation-grafted proton-exchange membranes, made of poly­(styrenesulfonic acid)-grafted poly­(ethylene-co-tetrafluoroethylene) (ETFE-g-PSSA). Hydrated ETFE-g-PSSA membranes were treated as a three-component system comprising the ETFE base polymer (BP), PSSA graft polymer (GP), and absorbed water. On a large length scale, polymer grains with an approximate radius of gyration (R g) of 150 nm and a mass fractal structure with a dimension of 2.4 were observed. These grains were formed by the aggregation of phase-separated GP domains in the BP matrix. Each individual GP domain has an average R g of 9.5 nm and is composed of homogeneously distributed GP and water nanodomains that form a bicontinuous-like local structure with a mean separation distance of 2 nm. These structures were strongly supported by the first finding that PSSA GP and water interact attractively and repulsively in q-regions lower and higher than 2 nm–1 (i.e., ∼3 nm), respectively. The repulsion between GP and water at a molecular length level of
doi_str_mv 10.1021/acs.macromol.2c00333
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_2c00333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h82619124</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-f43a3680521efd8d1888c52692b9ab30cfa48e628e087ce43175dfb9e004d2ed3</originalsourceid><addsrcrecordid>eNp9kF1PwjAUQBujiYj-Ax_6B4a37QbdIyGAJqgkg-flrmuhZB_Ydon7946grz7d5N6ck5tDyDODCQPOXlD5SY3KtXVbTbgCEELckBFLOESJFMktGQHwOEp5OrsnD96fABhLYjEi_b6xX52mWXCdCp3Dii6O6FAF7awPVnnaGrp2aEK068-abl0b2iZafqsjNgdN33VdOGy0p3tvmwPN5h8Z3aILdlBlCsNFNOxXXaOCbRs6b7DqvfWP5M5g5fXT7xyT_Wq5W7xGm8_122K-iZCnPEQmFiimEhLOtCllyaSUKuHTlBcpFgKUwVjqKZca5EzpWLBZUpoi1QBxyXUpxiS-eoc-3jtt8rOzNbo-Z5Bf8uVDvvwvX_6bb8Dgil2up7Zzw9v-f-QHfK951Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unique Structural Characteristics of Graft-Type Proton-Exchange Membranes Using SANS Partial Scattering Function Analysis</title><source>ACS Publications</source><creator>Zhao, Yue ; Yoshimura, Kimio ; Sawada, Shinichi ; Motegi, Toshinori ; Hiroki, Akihiro ; Radulescu, Aurel ; Maekawa, Yasunari</creator><creatorcontrib>Zhao, Yue ; Yoshimura, Kimio ; Sawada, Shinichi ; Motegi, Toshinori ; Hiroki, Akihiro ; Radulescu, Aurel ; Maekawa, Yasunari</creatorcontrib><description>The partial scattering function analysis was applied to determine the exact structure of radiation-grafted proton-exchange membranes, made of poly­(styrenesulfonic acid)-grafted poly­(ethylene-co-tetrafluoroethylene) (ETFE-g-PSSA). Hydrated ETFE-g-PSSA membranes were treated as a three-component system comprising the ETFE base polymer (BP), PSSA graft polymer (GP), and absorbed water. On a large length scale, polymer grains with an approximate radius of gyration (R g) of 150 nm and a mass fractal structure with a dimension of 2.4 were observed. These grains were formed by the aggregation of phase-separated GP domains in the BP matrix. Each individual GP domain has an average R g of 9.5 nm and is composed of homogeneously distributed GP and water nanodomains that form a bicontinuous-like local structure with a mean separation distance of 2 nm. These structures were strongly supported by the first finding that PSSA GP and water interact attractively and repulsively in q-regions lower and higher than 2 nm–1 (i.e., ∼3 nm), respectively. The repulsion between GP and water at a molecular length level of &lt;3 nm results in a lower hydration number and hence poorer conductivity at low relative humidity when compared to Nafion. The results of this study provided a mechanistic insight into membrane conductivity and structure correlations.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.2c00333</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2022-08, Vol.55 (16), p.7100-7109</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-f43a3680521efd8d1888c52692b9ab30cfa48e628e087ce43175dfb9e004d2ed3</citedby><cites>FETCH-LOGICAL-a292t-f43a3680521efd8d1888c52692b9ab30cfa48e628e087ce43175dfb9e004d2ed3</cites><orcidid>0000-0001-5100-9230 ; 0000-0002-2717-4823 ; 0000-0002-2635-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.2c00333$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.2c00333$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Yoshimura, Kimio</creatorcontrib><creatorcontrib>Sawada, Shinichi</creatorcontrib><creatorcontrib>Motegi, Toshinori</creatorcontrib><creatorcontrib>Hiroki, Akihiro</creatorcontrib><creatorcontrib>Radulescu, Aurel</creatorcontrib><creatorcontrib>Maekawa, Yasunari</creatorcontrib><title>Unique Structural Characteristics of Graft-Type Proton-Exchange Membranes Using SANS Partial Scattering Function Analysis</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The partial scattering function analysis was applied to determine the exact structure of radiation-grafted proton-exchange membranes, made of poly­(styrenesulfonic acid)-grafted poly­(ethylene-co-tetrafluoroethylene) (ETFE-g-PSSA). Hydrated ETFE-g-PSSA membranes were treated as a three-component system comprising the ETFE base polymer (BP), PSSA graft polymer (GP), and absorbed water. On a large length scale, polymer grains with an approximate radius of gyration (R g) of 150 nm and a mass fractal structure with a dimension of 2.4 were observed. These grains were formed by the aggregation of phase-separated GP domains in the BP matrix. Each individual GP domain has an average R g of 9.5 nm and is composed of homogeneously distributed GP and water nanodomains that form a bicontinuous-like local structure with a mean separation distance of 2 nm. These structures were strongly supported by the first finding that PSSA GP and water interact attractively and repulsively in q-regions lower and higher than 2 nm–1 (i.e., ∼3 nm), respectively. The repulsion between GP and water at a molecular length level of &lt;3 nm results in a lower hydration number and hence poorer conductivity at low relative humidity when compared to Nafion. The results of this study provided a mechanistic insight into membrane conductivity and structure correlations.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1PwjAUQBujiYj-Ax_6B4a37QbdIyGAJqgkg-flrmuhZB_Ydon7946grz7d5N6ck5tDyDODCQPOXlD5SY3KtXVbTbgCEELckBFLOESJFMktGQHwOEp5OrsnD96fABhLYjEi_b6xX52mWXCdCp3Dii6O6FAF7awPVnnaGrp2aEK068-abl0b2iZafqsjNgdN33VdOGy0p3tvmwPN5h8Z3aILdlBlCsNFNOxXXaOCbRs6b7DqvfWP5M5g5fXT7xyT_Wq5W7xGm8_122K-iZCnPEQmFiimEhLOtCllyaSUKuHTlBcpFgKUwVjqKZca5EzpWLBZUpoi1QBxyXUpxiS-eoc-3jtt8rOzNbo-Z5Bf8uVDvvwvX_6bb8Dgil2up7Zzw9v-f-QHfK951Q</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Zhao, Yue</creator><creator>Yoshimura, Kimio</creator><creator>Sawada, Shinichi</creator><creator>Motegi, Toshinori</creator><creator>Hiroki, Akihiro</creator><creator>Radulescu, Aurel</creator><creator>Maekawa, Yasunari</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5100-9230</orcidid><orcidid>https://orcid.org/0000-0002-2717-4823</orcidid><orcidid>https://orcid.org/0000-0002-2635-8989</orcidid></search><sort><creationdate>20220823</creationdate><title>Unique Structural Characteristics of Graft-Type Proton-Exchange Membranes Using SANS Partial Scattering Function Analysis</title><author>Zhao, Yue ; Yoshimura, Kimio ; Sawada, Shinichi ; Motegi, Toshinori ; Hiroki, Akihiro ; Radulescu, Aurel ; Maekawa, Yasunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-f43a3680521efd8d1888c52692b9ab30cfa48e628e087ce43175dfb9e004d2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Yoshimura, Kimio</creatorcontrib><creatorcontrib>Sawada, Shinichi</creatorcontrib><creatorcontrib>Motegi, Toshinori</creatorcontrib><creatorcontrib>Hiroki, Akihiro</creatorcontrib><creatorcontrib>Radulescu, Aurel</creatorcontrib><creatorcontrib>Maekawa, Yasunari</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yue</au><au>Yoshimura, Kimio</au><au>Sawada, Shinichi</au><au>Motegi, Toshinori</au><au>Hiroki, Akihiro</au><au>Radulescu, Aurel</au><au>Maekawa, Yasunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique Structural Characteristics of Graft-Type Proton-Exchange Membranes Using SANS Partial Scattering Function Analysis</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>55</volume><issue>16</issue><spage>7100</spage><epage>7109</epage><pages>7100-7109</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>The partial scattering function analysis was applied to determine the exact structure of radiation-grafted proton-exchange membranes, made of poly­(styrenesulfonic acid)-grafted poly­(ethylene-co-tetrafluoroethylene) (ETFE-g-PSSA). Hydrated ETFE-g-PSSA membranes were treated as a three-component system comprising the ETFE base polymer (BP), PSSA graft polymer (GP), and absorbed water. On a large length scale, polymer grains with an approximate radius of gyration (R g) of 150 nm and a mass fractal structure with a dimension of 2.4 were observed. These grains were formed by the aggregation of phase-separated GP domains in the BP matrix. Each individual GP domain has an average R g of 9.5 nm and is composed of homogeneously distributed GP and water nanodomains that form a bicontinuous-like local structure with a mean separation distance of 2 nm. These structures were strongly supported by the first finding that PSSA GP and water interact attractively and repulsively in q-regions lower and higher than 2 nm–1 (i.e., ∼3 nm), respectively. The repulsion between GP and water at a molecular length level of &lt;3 nm results in a lower hydration number and hence poorer conductivity at low relative humidity when compared to Nafion. The results of this study provided a mechanistic insight into membrane conductivity and structure correlations.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.2c00333</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5100-9230</orcidid><orcidid>https://orcid.org/0000-0002-2717-4823</orcidid><orcidid>https://orcid.org/0000-0002-2635-8989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2022-08, Vol.55 (16), p.7100-7109
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_2c00333
source ACS Publications
title Unique Structural Characteristics of Graft-Type Proton-Exchange Membranes Using SANS Partial Scattering Function Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20Structural%20Characteristics%20of%20Graft-Type%20Proton-Exchange%20Membranes%20Using%20SANS%20Partial%20Scattering%20Function%20Analysis&rft.jtitle=Macromolecules&rft.au=Zhao,%20Yue&rft.date=2022-08-23&rft.volume=55&rft.issue=16&rft.spage=7100&rft.epage=7109&rft.pages=7100-7109&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.2c00333&rft_dat=%3Cacs_cross%3Eh82619124%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true