Theory of Step-Growth Ring Expansion Polymerization
The power law describing the distribution X n of molecular weights for polymerizations that proceed via step-growth ring expansion is shown to be X n ∼ n –3/2. This differs from ring-chain equilibria that are described by Jacobson–Stockmayer theory with its X n ∼ n –5/2 law. This difference in the p...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2021-09, Vol.54 (18), p.8548-8552 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8552 |
---|---|
container_issue | 18 |
container_start_page | 8548 |
container_title | Macromolecules |
container_volume | 54 |
creator | Eichinger, B. E |
description | The power law describing the distribution X n of molecular weights for polymerizations that proceed via step-growth ring expansion is shown to be X n ∼ n –3/2. This differs from ring-chain equilibria that are described by Jacobson–Stockmayer theory with its X n ∼ n –5/2 law. This difference in the power law for formation of rings has a profound effect on the distribution of macrocycle molecular weights. At high conversions, the number average degree of polymerization (DP) for a ring expansion polymerization is approximately the square root of that for an equivalent linear step-growth polymerization and is not increased by dilution. The weight average DP at high conversions is approximately one-half that of the number average DP for a linear polymerization at the same conversion. |
doi_str_mv | 10.1021/acs.macromol.1c00997 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_1c00997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b643450775</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-96b4158c5142ff118c5e1b581de7ce323837b5c1cafc93a901367ab2ecb51fee3</originalsourceid><addsrcrecordid>eNp9j9FKwzAUhoMoWKdv4EVfIPWcpFmbSxlzCgNF53VIY-I62qYkFa1Pv47NW6_OORy-n_8j5BYhQ2B4p03MWm2Cb32ToQGQsjgjCQoGVJRcnJMEgOVUMllckqsYdwCIIucJ4Zut9WFMvUvfBtvTVfDfwzZ9rbvPdPnT6y7WvktffDO2NtS_epjOa3LhdBPtzWnOyPvDcrN4pOvn1dPifk01k2ygcl7lKEojMGfOIU6bxUqU-GELYznjJS8qYdBoZyTXEpDPC10xayqBzlo-I_kxdzKLMVin-lC3OowKQR3E1SSu_sTVSXzC4Igdvjv_Fbqp5P_IHnCjYHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory of Step-Growth Ring Expansion Polymerization</title><source>ACS Publications</source><creator>Eichinger, B. E</creator><creatorcontrib>Eichinger, B. E</creatorcontrib><description>The power law describing the distribution X n of molecular weights for polymerizations that proceed via step-growth ring expansion is shown to be X n ∼ n –3/2. This differs from ring-chain equilibria that are described by Jacobson–Stockmayer theory with its X n ∼ n –5/2 law. This difference in the power law for formation of rings has a profound effect on the distribution of macrocycle molecular weights. At high conversions, the number average degree of polymerization (DP) for a ring expansion polymerization is approximately the square root of that for an equivalent linear step-growth polymerization and is not increased by dilution. The weight average DP at high conversions is approximately one-half that of the number average DP for a linear polymerization at the same conversion.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.1c00997</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2021-09, Vol.54 (18), p.8548-8552</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-96b4158c5142ff118c5e1b581de7ce323837b5c1cafc93a901367ab2ecb51fee3</citedby><cites>FETCH-LOGICAL-a292t-96b4158c5142ff118c5e1b581de7ce323837b5c1cafc93a901367ab2ecb51fee3</cites><orcidid>0000-0002-6995-3243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.1c00997$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.1c00997$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Eichinger, B. E</creatorcontrib><title>Theory of Step-Growth Ring Expansion Polymerization</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The power law describing the distribution X n of molecular weights for polymerizations that proceed via step-growth ring expansion is shown to be X n ∼ n –3/2. This differs from ring-chain equilibria that are described by Jacobson–Stockmayer theory with its X n ∼ n –5/2 law. This difference in the power law for formation of rings has a profound effect on the distribution of macrocycle molecular weights. At high conversions, the number average degree of polymerization (DP) for a ring expansion polymerization is approximately the square root of that for an equivalent linear step-growth polymerization and is not increased by dilution. The weight average DP at high conversions is approximately one-half that of the number average DP for a linear polymerization at the same conversion.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j9FKwzAUhoMoWKdv4EVfIPWcpFmbSxlzCgNF53VIY-I62qYkFa1Pv47NW6_OORy-n_8j5BYhQ2B4p03MWm2Cb32ToQGQsjgjCQoGVJRcnJMEgOVUMllckqsYdwCIIucJ4Zut9WFMvUvfBtvTVfDfwzZ9rbvPdPnT6y7WvktffDO2NtS_epjOa3LhdBPtzWnOyPvDcrN4pOvn1dPifk01k2ygcl7lKEojMGfOIU6bxUqU-GELYznjJS8qYdBoZyTXEpDPC10xayqBzlo-I_kxdzKLMVin-lC3OowKQR3E1SSu_sTVSXzC4Igdvjv_Fbqp5P_IHnCjYHI</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Eichinger, B. E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6995-3243</orcidid></search><sort><creationdate>20210928</creationdate><title>Theory of Step-Growth Ring Expansion Polymerization</title><author>Eichinger, B. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-96b4158c5142ff118c5e1b581de7ce323837b5c1cafc93a901367ab2ecb51fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichinger, B. E</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichinger, B. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Step-Growth Ring Expansion Polymerization</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2021-09-28</date><risdate>2021</risdate><volume>54</volume><issue>18</issue><spage>8548</spage><epage>8552</epage><pages>8548-8552</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>The power law describing the distribution X n of molecular weights for polymerizations that proceed via step-growth ring expansion is shown to be X n ∼ n –3/2. This differs from ring-chain equilibria that are described by Jacobson–Stockmayer theory with its X n ∼ n –5/2 law. This difference in the power law for formation of rings has a profound effect on the distribution of macrocycle molecular weights. At high conversions, the number average degree of polymerization (DP) for a ring expansion polymerization is approximately the square root of that for an equivalent linear step-growth polymerization and is not increased by dilution. The weight average DP at high conversions is approximately one-half that of the number average DP for a linear polymerization at the same conversion.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.1c00997</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6995-3243</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 2021-09, Vol.54 (18), p.8548-8552 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_macromol_1c00997 |
source | ACS Publications |
title | Theory of Step-Growth Ring Expansion Polymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Step-Growth%20Ring%20Expansion%20Polymerization&rft.jtitle=Macromolecules&rft.au=Eichinger,%20B.%20E&rft.date=2021-09-28&rft.volume=54&rft.issue=18&rft.spage=8548&rft.epage=8552&rft.pages=8548-8552&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.1c00997&rft_dat=%3Cacs_cross%3Eb643450775%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |