Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines

Both gradient and block copolymers can be used as drug delivery systems, but their relative (dis)­advantages remain unknown. Thus, we directly compared analogous amphiphilic gradient and block polyoxazolines for their physicochemical properties and potential as building components of nanodrugs. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2021-09, Vol.54 (17), p.8182-8194
Hauptverfasser: Loukotová, Lenka, Švec, Pavel, Groborz, Ondřej, Heizer, Tomáš, Beneš, Hynek, Raabová, Helena, Bělinová, Tereza, Herynek, Vít, Hrubý, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8194
container_issue 17
container_start_page 8182
container_title Macromolecules
container_volume 54
creator Loukotová, Lenka
Švec, Pavel
Groborz, Ondřej
Heizer, Tomáš
Beneš, Hynek
Raabová, Helena
Bělinová, Tereza
Herynek, Vít
Hrubý, Martin
description Both gradient and block copolymers can be used as drug delivery systems, but their relative (dis)­advantages remain unknown. Thus, we directly compared analogous amphiphilic gradient and block polyoxazolines for their physicochemical properties and potential as building components of nanodrugs. For this purpose, we prepared a library of 18 polymers with varying ratios of monomeric units, using 2-methyl-2-oxazoline (MeOx) as a hydrophilic monomer and 2-phenyl-2-oxazoline (PhOx), 2-(4-butylphenyl)-2-oxazoline (BuPhOx), or 2-(4-butoxyphenyl)-2-oxazoline (BuOPhOx) as a hydrophobic monomer, and determined their homo/heteropolymerization kinetics. Our results showed that gradient copolymers had broader glass transition intervals and formed nanoparticles several times smaller and more compact than the corresponding block analogs. In particular, PMeOx70-grad-PhOx30 and PMeOx70-grad-BuPhOx30 exhibited a significantly higher drug loading capacity and entrapment efficiency than their corresponding block analogs. Notwithstanding these differences, all polymers were cyto- and hemocompatible in vitro. Therefore, analogous gradient and block copolymers may be alternatively used for specific biomedical applications.
doi_str_mv 10.1021/acs.macromol.0c02674
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_0c02674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c852928656</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-9569f43d74e42d6cb5dcfa9e6d7c3f7d73953e02b484d91fdec20f68c9db429b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtv4CIvMPXmb2ayHKtWoaALXQ-Z_GhqZlKSFqxP3ymtW-HAXRy-C-dD6JbAjAAld0rnWa90in0MM9BAy4qfoQkRFApRM3GOJgCUF5LK6hJd5bwCIERwNkHLB5-s3uB57Ncq-RwHHB1uBhXiZ9xm3PTrLz8meI0XSRlvhw1Wg8H3Iepv_BbDLv6o3xj8YPM1unAqZHtzulP08fT4Pn8ulq-Ll3mzLBSVdFNIUUrHmam45dSUuhNGOyVtaSrNXGUqJgWzQDtecyOJM1ZTcGWtpek4lR2bIn78O07OOVnXrpPvVdq1BNqDkXY00v4ZaU9GRgyO2KFdxW0aV-b_kT0hOGoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines</title><source>ACS Publications</source><creator>Loukotová, Lenka ; Švec, Pavel ; Groborz, Ondřej ; Heizer, Tomáš ; Beneš, Hynek ; Raabová, Helena ; Bělinová, Tereza ; Herynek, Vít ; Hrubý, Martin</creator><creatorcontrib>Loukotová, Lenka ; Švec, Pavel ; Groborz, Ondřej ; Heizer, Tomáš ; Beneš, Hynek ; Raabová, Helena ; Bělinová, Tereza ; Herynek, Vít ; Hrubý, Martin</creatorcontrib><description>Both gradient and block copolymers can be used as drug delivery systems, but their relative (dis)­advantages remain unknown. Thus, we directly compared analogous amphiphilic gradient and block polyoxazolines for their physicochemical properties and potential as building components of nanodrugs. For this purpose, we prepared a library of 18 polymers with varying ratios of monomeric units, using 2-methyl-2-oxazoline (MeOx) as a hydrophilic monomer and 2-phenyl-2-oxazoline (PhOx), 2-(4-butylphenyl)-2-oxazoline (BuPhOx), or 2-(4-butoxyphenyl)-2-oxazoline (BuOPhOx) as a hydrophobic monomer, and determined their homo/heteropolymerization kinetics. Our results showed that gradient copolymers had broader glass transition intervals and formed nanoparticles several times smaller and more compact than the corresponding block analogs. In particular, PMeOx70-grad-PhOx30 and PMeOx70-grad-BuPhOx30 exhibited a significantly higher drug loading capacity and entrapment efficiency than their corresponding block analogs. Notwithstanding these differences, all polymers were cyto- and hemocompatible in vitro. Therefore, analogous gradient and block copolymers may be alternatively used for specific biomedical applications.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.0c02674</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2021-09, Vol.54 (17), p.8182-8194</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-9569f43d74e42d6cb5dcfa9e6d7c3f7d73953e02b484d91fdec20f68c9db429b3</citedby><cites>FETCH-LOGICAL-a292t-9569f43d74e42d6cb5dcfa9e6d7c3f7d73953e02b484d91fdec20f68c9db429b3</cites><orcidid>0000-0002-6604-2815 ; 0000-0002-3164-6168 ; 0000-0002-1775-2394 ; 0000-0002-8087-1425 ; 0000-0002-6861-1997 ; 0000-0002-5075-261X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.0c02674$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.0c02674$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Loukotová, Lenka</creatorcontrib><creatorcontrib>Švec, Pavel</creatorcontrib><creatorcontrib>Groborz, Ondřej</creatorcontrib><creatorcontrib>Heizer, Tomáš</creatorcontrib><creatorcontrib>Beneš, Hynek</creatorcontrib><creatorcontrib>Raabová, Helena</creatorcontrib><creatorcontrib>Bělinová, Tereza</creatorcontrib><creatorcontrib>Herynek, Vít</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><title>Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Both gradient and block copolymers can be used as drug delivery systems, but their relative (dis)­advantages remain unknown. Thus, we directly compared analogous amphiphilic gradient and block polyoxazolines for their physicochemical properties and potential as building components of nanodrugs. For this purpose, we prepared a library of 18 polymers with varying ratios of monomeric units, using 2-methyl-2-oxazoline (MeOx) as a hydrophilic monomer and 2-phenyl-2-oxazoline (PhOx), 2-(4-butylphenyl)-2-oxazoline (BuPhOx), or 2-(4-butoxyphenyl)-2-oxazoline (BuOPhOx) as a hydrophobic monomer, and determined their homo/heteropolymerization kinetics. Our results showed that gradient copolymers had broader glass transition intervals and formed nanoparticles several times smaller and more compact than the corresponding block analogs. In particular, PMeOx70-grad-PhOx30 and PMeOx70-grad-BuPhOx30 exhibited a significantly higher drug loading capacity and entrapment efficiency than their corresponding block analogs. Notwithstanding these differences, all polymers were cyto- and hemocompatible in vitro. Therefore, analogous gradient and block copolymers may be alternatively used for specific biomedical applications.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtv4CIvMPXmb2ayHKtWoaALXQ-Z_GhqZlKSFqxP3ymtW-HAXRy-C-dD6JbAjAAld0rnWa90in0MM9BAy4qfoQkRFApRM3GOJgCUF5LK6hJd5bwCIERwNkHLB5-s3uB57Ncq-RwHHB1uBhXiZ9xm3PTrLz8meI0XSRlvhw1Wg8H3Iepv_BbDLv6o3xj8YPM1unAqZHtzulP08fT4Pn8ulq-Ll3mzLBSVdFNIUUrHmam45dSUuhNGOyVtaSrNXGUqJgWzQDtecyOJM1ZTcGWtpek4lR2bIn78O07OOVnXrpPvVdq1BNqDkXY00v4ZaU9GRgyO2KFdxW0aV-b_kT0hOGoM</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Loukotová, Lenka</creator><creator>Švec, Pavel</creator><creator>Groborz, Ondřej</creator><creator>Heizer, Tomáš</creator><creator>Beneš, Hynek</creator><creator>Raabová, Helena</creator><creator>Bělinová, Tereza</creator><creator>Herynek, Vít</creator><creator>Hrubý, Martin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6604-2815</orcidid><orcidid>https://orcid.org/0000-0002-3164-6168</orcidid><orcidid>https://orcid.org/0000-0002-1775-2394</orcidid><orcidid>https://orcid.org/0000-0002-8087-1425</orcidid><orcidid>https://orcid.org/0000-0002-6861-1997</orcidid><orcidid>https://orcid.org/0000-0002-5075-261X</orcidid></search><sort><creationdate>20210914</creationdate><title>Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines</title><author>Loukotová, Lenka ; Švec, Pavel ; Groborz, Ondřej ; Heizer, Tomáš ; Beneš, Hynek ; Raabová, Helena ; Bělinová, Tereza ; Herynek, Vít ; Hrubý, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-9569f43d74e42d6cb5dcfa9e6d7c3f7d73953e02b484d91fdec20f68c9db429b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loukotová, Lenka</creatorcontrib><creatorcontrib>Švec, Pavel</creatorcontrib><creatorcontrib>Groborz, Ondřej</creatorcontrib><creatorcontrib>Heizer, Tomáš</creatorcontrib><creatorcontrib>Beneš, Hynek</creatorcontrib><creatorcontrib>Raabová, Helena</creatorcontrib><creatorcontrib>Bělinová, Tereza</creatorcontrib><creatorcontrib>Herynek, Vít</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loukotová, Lenka</au><au>Švec, Pavel</au><au>Groborz, Ondřej</au><au>Heizer, Tomáš</au><au>Beneš, Hynek</au><au>Raabová, Helena</au><au>Bělinová, Tereza</au><au>Herynek, Vít</au><au>Hrubý, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>54</volume><issue>17</issue><spage>8182</spage><epage>8194</epage><pages>8182-8194</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Both gradient and block copolymers can be used as drug delivery systems, but their relative (dis)­advantages remain unknown. Thus, we directly compared analogous amphiphilic gradient and block polyoxazolines for their physicochemical properties and potential as building components of nanodrugs. For this purpose, we prepared a library of 18 polymers with varying ratios of monomeric units, using 2-methyl-2-oxazoline (MeOx) as a hydrophilic monomer and 2-phenyl-2-oxazoline (PhOx), 2-(4-butylphenyl)-2-oxazoline (BuPhOx), or 2-(4-butoxyphenyl)-2-oxazoline (BuOPhOx) as a hydrophobic monomer, and determined their homo/heteropolymerization kinetics. Our results showed that gradient copolymers had broader glass transition intervals and formed nanoparticles several times smaller and more compact than the corresponding block analogs. In particular, PMeOx70-grad-PhOx30 and PMeOx70-grad-BuPhOx30 exhibited a significantly higher drug loading capacity and entrapment efficiency than their corresponding block analogs. Notwithstanding these differences, all polymers were cyto- and hemocompatible in vitro. Therefore, analogous gradient and block copolymers may be alternatively used for specific biomedical applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.0c02674</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6604-2815</orcidid><orcidid>https://orcid.org/0000-0002-3164-6168</orcidid><orcidid>https://orcid.org/0000-0002-1775-2394</orcidid><orcidid>https://orcid.org/0000-0002-8087-1425</orcidid><orcidid>https://orcid.org/0000-0002-6861-1997</orcidid><orcidid>https://orcid.org/0000-0002-5075-261X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2021-09, Vol.54 (17), p.8182-8194
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_0c02674
source ACS Publications
title Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Comparison%20of%20Analogous%20Amphiphilic%20Gradient%20and%20Block%20Polyoxazolines&rft.jtitle=Macromolecules&rft.au=Loukotova%CC%81,%20Lenka&rft.date=2021-09-14&rft.volume=54&rft.issue=17&rft.spage=8182&rft.epage=8194&rft.pages=8182-8194&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.0c02674&rft_dat=%3Cacs_cross%3Ec852928656%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true