Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains
We use molecular dynamics simulations to characterize spatio-temporal, high-mobility domains in various bulk polymers, thin slabs, and isolated chains as liquid samples are cooled across the glass transition. We define high-mobility domains as clusters, in space and time of torsional transition even...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2020-11, Vol.53 (21), p.9375-9385 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9385 |
---|---|
container_issue | 21 |
container_start_page | 9375 |
container_title | Macromolecules |
container_volume | 53 |
creator | Alzate-Vargas, Lorena Onofrio, Nicolas Strachan, Alejandro |
description | We use molecular dynamics simulations to characterize spatio-temporal, high-mobility domains in various bulk polymers, thin slabs, and isolated chains as liquid samples are cooled across the glass transition. We define high-mobility domains as clusters, in space and time of torsional transition events along the polymers’ backbones (dihedral angles switching between low-energy states). We confirm a linear relationship between the activation energy associated with such torsional transition events and the observed glass transition temperature across all systems studied. Furthermore, we find that the high-mobility domains percolate throughout the systems as the temperature is increased across the glass transition. Importantly, we observe identical percolation behavior in bulk systems, thin slabs, and small isolated chains (down to 100-monomer), even when the overall torsional relaxation rates increase significantly with free surface. Our results indicate that important dynamical features of undercooled polymers remain intact even in nanoscale systems. |
doi_str_mv | 10.1021/acs.macromol.0c00853 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_0c00853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a560323833</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-d543b44dfdc2b5ecabeae2f65923e85c28d226a203d05ca1163e4f06195e4ae63</originalsourceid><addsrcrecordid>eNp9kFFPwjAQxxujiYh-Ax_6BYbXrp3bI6KCCUYT4Hm5dR0Uu5W0w4RvbxF89ekuufvd_fIn5J7BiAFnD6jCqEXlXevsCBRALtMLMmCSQyLzVF6SAQAXScGLx2tyE8IWgDEp0gHZrzrzrX1Aa_oDNR1d7LA3Llnqduc8Wjoz603y7irzu_DsWjRdoOP4LATabzSdWozd0mMXTCQ72kQP-rS3X_TT2UMbj9Pe0YXp1lbTyebI35KrBm3Qd-c6JKvXl-Vklsw_pm-T8TxBXvA-qaNiJUTd1IpXUiusNGreZLLgqc6l4nnNeYYc0hqkQsayVIsGMlZILVBn6ZCI091fXa-bcudNi_5QMiiP0ZUxuvIvuvIcXcTghB2nW7f3XZT8H_kBk-Z4qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains</title><source>American Chemical Society Journals</source><creator>Alzate-Vargas, Lorena ; Onofrio, Nicolas ; Strachan, Alejandro</creator><creatorcontrib>Alzate-Vargas, Lorena ; Onofrio, Nicolas ; Strachan, Alejandro</creatorcontrib><description>We use molecular dynamics simulations to characterize spatio-temporal, high-mobility domains in various bulk polymers, thin slabs, and isolated chains as liquid samples are cooled across the glass transition. We define high-mobility domains as clusters, in space and time of torsional transition events along the polymers’ backbones (dihedral angles switching between low-energy states). We confirm a linear relationship between the activation energy associated with such torsional transition events and the observed glass transition temperature across all systems studied. Furthermore, we find that the high-mobility domains percolate throughout the systems as the temperature is increased across the glass transition. Importantly, we observe identical percolation behavior in bulk systems, thin slabs, and small isolated chains (down to 100-monomer), even when the overall torsional relaxation rates increase significantly with free surface. Our results indicate that important dynamical features of undercooled polymers remain intact even in nanoscale systems.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.0c00853</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2020-11, Vol.53 (21), p.9375-9385</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-d543b44dfdc2b5ecabeae2f65923e85c28d226a203d05ca1163e4f06195e4ae63</citedby><cites>FETCH-LOGICAL-a292t-d543b44dfdc2b5ecabeae2f65923e85c28d226a203d05ca1163e4f06195e4ae63</cites><orcidid>0000-0002-4223-4046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.0c00853$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.0c00853$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Alzate-Vargas, Lorena</creatorcontrib><creatorcontrib>Onofrio, Nicolas</creatorcontrib><creatorcontrib>Strachan, Alejandro</creatorcontrib><title>Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>We use molecular dynamics simulations to characterize spatio-temporal, high-mobility domains in various bulk polymers, thin slabs, and isolated chains as liquid samples are cooled across the glass transition. We define high-mobility domains as clusters, in space and time of torsional transition events along the polymers’ backbones (dihedral angles switching between low-energy states). We confirm a linear relationship between the activation energy associated with such torsional transition events and the observed glass transition temperature across all systems studied. Furthermore, we find that the high-mobility domains percolate throughout the systems as the temperature is increased across the glass transition. Importantly, we observe identical percolation behavior in bulk systems, thin slabs, and small isolated chains (down to 100-monomer), even when the overall torsional relaxation rates increase significantly with free surface. Our results indicate that important dynamical features of undercooled polymers remain intact even in nanoscale systems.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFFPwjAQxxujiYh-Ax_6BYbXrp3bI6KCCUYT4Hm5dR0Uu5W0w4RvbxF89ekuufvd_fIn5J7BiAFnD6jCqEXlXevsCBRALtMLMmCSQyLzVF6SAQAXScGLx2tyE8IWgDEp0gHZrzrzrX1Aa_oDNR1d7LA3Llnqduc8Wjoz603y7irzu_DsWjRdoOP4LATabzSdWozd0mMXTCQ72kQP-rS3X_TT2UMbj9Pe0YXp1lbTyebI35KrBm3Qd-c6JKvXl-Vklsw_pm-T8TxBXvA-qaNiJUTd1IpXUiusNGreZLLgqc6l4nnNeYYc0hqkQsayVIsGMlZILVBn6ZCI091fXa-bcudNi_5QMiiP0ZUxuvIvuvIcXcTghB2nW7f3XZT8H_kBk-Z4qw</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>Alzate-Vargas, Lorena</creator><creator>Onofrio, Nicolas</creator><creator>Strachan, Alejandro</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4223-4046</orcidid></search><sort><creationdate>20201110</creationdate><title>Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains</title><author>Alzate-Vargas, Lorena ; Onofrio, Nicolas ; Strachan, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-d543b44dfdc2b5ecabeae2f65923e85c28d226a203d05ca1163e4f06195e4ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alzate-Vargas, Lorena</creatorcontrib><creatorcontrib>Onofrio, Nicolas</creatorcontrib><creatorcontrib>Strachan, Alejandro</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alzate-Vargas, Lorena</au><au>Onofrio, Nicolas</au><au>Strachan, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2020-11-10</date><risdate>2020</risdate><volume>53</volume><issue>21</issue><spage>9375</spage><epage>9385</epage><pages>9375-9385</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>We use molecular dynamics simulations to characterize spatio-temporal, high-mobility domains in various bulk polymers, thin slabs, and isolated chains as liquid samples are cooled across the glass transition. We define high-mobility domains as clusters, in space and time of torsional transition events along the polymers’ backbones (dihedral angles switching between low-energy states). We confirm a linear relationship between the activation energy associated with such torsional transition events and the observed glass transition temperature across all systems studied. Furthermore, we find that the high-mobility domains percolate throughout the systems as the temperature is increased across the glass transition. Importantly, we observe identical percolation behavior in bulk systems, thin slabs, and small isolated chains (down to 100-monomer), even when the overall torsional relaxation rates increase significantly with free surface. Our results indicate that important dynamical features of undercooled polymers remain intact even in nanoscale systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.0c00853</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4223-4046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 2020-11, Vol.53 (21), p.9375-9385 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_macromol_0c00853 |
source | American Chemical Society Journals |
title | Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universality%20in%20Spatio-Temporal%20High-Mobility%20Domains%20Across%20the%20Glass%20Transition%20from%20Bulk%20Polymers%20to%20Single%20Chains&rft.jtitle=Macromolecules&rft.au=Alzate-Vargas,%20Lorena&rft.date=2020-11-10&rft.volume=53&rft.issue=21&rft.spage=9375&rft.epage=9385&rft.pages=9375-9385&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.0c00853&rft_dat=%3Cacs_cross%3Ea560323833%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |