Nanoparticle–Cell Interactions: Surface Chemistry Effects on the Cellular Uptake of Biocompatible Block Copolymer Assemblies

The development of nanovehicles for intracellular drug delivery is strongly bound to the understating and control of nanoparticles cellular uptake process, which in turn is governed by surface chemistry. In this study, we explored the synthesis, characterization, and cellular uptake of block copolym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2018-02, Vol.34 (5), p.2180-2188
Hauptverfasser: de Castro, Carlos E, Ribeiro, Caroline A. S, Alavarse, Alex C, Albuquerque, Lindomar J. C, da Silva, Maria C. C, Jäger, Eliézer, Surman, František, Schmidt, Vanessa, Giacomelli, Cristiano, Giacomelli, Fernando C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2188
container_issue 5
container_start_page 2180
container_title Langmuir
container_volume 34
creator de Castro, Carlos E
Ribeiro, Caroline A. S
Alavarse, Alex C
Albuquerque, Lindomar J. C
da Silva, Maria C. C
Jäger, Eliézer
Surman, František
Schmidt, Vanessa
Giacomelli, Cristiano
Giacomelli, Fernando C
description The development of nanovehicles for intracellular drug delivery is strongly bound to the understating and control of nanoparticles cellular uptake process, which in turn is governed by surface chemistry. In this study, we explored the synthesis, characterization, and cellular uptake of block copolymer assemblies consisting of a pH-responsive poly­[2-(diisopropyl­amino)­ethyl methacrylate] (PDPA) core stabilized by three different biocompatible hydrophilic shells (a zwitterionic type poly­(2-methacryl­oyloxyethyl phosphorylcholine) (PMPC) layer, a highly hydrated poly­(ethylene oxide) (PEO) layer with stealth effect, and an also proven nontoxic and nonimmunogenic poly­(N-(2-hydroxypropyl)­methacrylamide) (PHPMA) layer). All particles had a spherical core–shell structure. The largest particles with the thickest hydrophilic stabilizing shell obtained from PMPC40-b-PDPA70 were internalized to a higher level than those smaller in size and stabilized by PEO or PHPMA and produced from PEO122-b-PDPA43 or PHPMA64-b-PDPA72, respectively. Such a behavior was confirmed among different cell lines, with assemblies being internalized to a higher degree in cancer (HeLa) as compared to healthy (Telo-RF) cells. This fact was mainly attributed to the stronger binding of PMPC to cell membranes. Therefore, cellular uptake of nanoparticles at the sub-100 nm size range may be chiefly governed by the chemical nature of the stabilizing layer rather than particles size and/or shell thickness.
doi_str_mv 10.1021/acs.langmuir.7b04040
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_langmuir_7b04040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b6143162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-7204206db57ce05fbd8e3662768a446258d779fff6c2ec737e677029a603fa813</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EouVxA4R8gRTHduyEXRvxkipYAOvIcccQ6sSR7Sy6QdyBG3ISUhVYolnMYv7vl-ZD6Cwls5TQ9ELpMLOqe2mHxs9kTfg4e2iaZpQkWU7lPpoSyVkiuWATdBTCGyGkYLw4RBNaMJbTLJ-i93vVuV752GgLXx-fJViL77oIXunYuC5c4sfBG6UBl6_QNiH6Db4yBnQM2HU4vo6HkRms8vi5j2oN2Bm8aJx2ba9iU1vAC-v0Gpeud3bTgsfzEKCtbQPhBB0YZQOc_uxj9Hx99VTeJsuHm7tyvkwUz9KYSEo4JWJVZ1IDyUy9yoEJQaXIFedi_GQlZWGMEZqClkyCkJLQQgnCjMpTdoz4rld7F4IHU_W-aZXfVCmptjqrUWf1q7P60Tli5zusH-oWVn_Qr78xQHaBLf7mBt-NX_zf-Q3xIIfD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoparticle–Cell Interactions: Surface Chemistry Effects on the Cellular Uptake of Biocompatible Block Copolymer Assemblies</title><source>ACS Publications</source><creator>de Castro, Carlos E ; Ribeiro, Caroline A. S ; Alavarse, Alex C ; Albuquerque, Lindomar J. C ; da Silva, Maria C. C ; Jäger, Eliézer ; Surman, František ; Schmidt, Vanessa ; Giacomelli, Cristiano ; Giacomelli, Fernando C</creator><creatorcontrib>de Castro, Carlos E ; Ribeiro, Caroline A. S ; Alavarse, Alex C ; Albuquerque, Lindomar J. C ; da Silva, Maria C. C ; Jäger, Eliézer ; Surman, František ; Schmidt, Vanessa ; Giacomelli, Cristiano ; Giacomelli, Fernando C</creatorcontrib><description>The development of nanovehicles for intracellular drug delivery is strongly bound to the understating and control of nanoparticles cellular uptake process, which in turn is governed by surface chemistry. In this study, we explored the synthesis, characterization, and cellular uptake of block copolymer assemblies consisting of a pH-responsive poly­[2-(diisopropyl­amino)­ethyl methacrylate] (PDPA) core stabilized by three different biocompatible hydrophilic shells (a zwitterionic type poly­(2-methacryl­oyloxyethyl phosphorylcholine) (PMPC) layer, a highly hydrated poly­(ethylene oxide) (PEO) layer with stealth effect, and an also proven nontoxic and nonimmunogenic poly­(N-(2-hydroxypropyl)­methacrylamide) (PHPMA) layer). All particles had a spherical core–shell structure. The largest particles with the thickest hydrophilic stabilizing shell obtained from PMPC40-b-PDPA70 were internalized to a higher level than those smaller in size and stabilized by PEO or PHPMA and produced from PEO122-b-PDPA43 or PHPMA64-b-PDPA72, respectively. Such a behavior was confirmed among different cell lines, with assemblies being internalized to a higher degree in cancer (HeLa) as compared to healthy (Telo-RF) cells. This fact was mainly attributed to the stronger binding of PMPC to cell membranes. Therefore, cellular uptake of nanoparticles at the sub-100 nm size range may be chiefly governed by the chemical nature of the stabilizing layer rather than particles size and/or shell thickness.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.7b04040</identifier><identifier>PMID: 29338258</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2018-02, Vol.34 (5), p.2180-2188</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-7204206db57ce05fbd8e3662768a446258d779fff6c2ec737e677029a603fa813</citedby><cites>FETCH-LOGICAL-a451t-7204206db57ce05fbd8e3662768a446258d779fff6c2ec737e677029a603fa813</cites><orcidid>0000-0002-6872-9354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.7b04040$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.7b04040$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29338258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Castro, Carlos E</creatorcontrib><creatorcontrib>Ribeiro, Caroline A. S</creatorcontrib><creatorcontrib>Alavarse, Alex C</creatorcontrib><creatorcontrib>Albuquerque, Lindomar J. C</creatorcontrib><creatorcontrib>da Silva, Maria C. C</creatorcontrib><creatorcontrib>Jäger, Eliézer</creatorcontrib><creatorcontrib>Surman, František</creatorcontrib><creatorcontrib>Schmidt, Vanessa</creatorcontrib><creatorcontrib>Giacomelli, Cristiano</creatorcontrib><creatorcontrib>Giacomelli, Fernando C</creatorcontrib><title>Nanoparticle–Cell Interactions: Surface Chemistry Effects on the Cellular Uptake of Biocompatible Block Copolymer Assemblies</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The development of nanovehicles for intracellular drug delivery is strongly bound to the understating and control of nanoparticles cellular uptake process, which in turn is governed by surface chemistry. In this study, we explored the synthesis, characterization, and cellular uptake of block copolymer assemblies consisting of a pH-responsive poly­[2-(diisopropyl­amino)­ethyl methacrylate] (PDPA) core stabilized by three different biocompatible hydrophilic shells (a zwitterionic type poly­(2-methacryl­oyloxyethyl phosphorylcholine) (PMPC) layer, a highly hydrated poly­(ethylene oxide) (PEO) layer with stealth effect, and an also proven nontoxic and nonimmunogenic poly­(N-(2-hydroxypropyl)­methacrylamide) (PHPMA) layer). All particles had a spherical core–shell structure. The largest particles with the thickest hydrophilic stabilizing shell obtained from PMPC40-b-PDPA70 were internalized to a higher level than those smaller in size and stabilized by PEO or PHPMA and produced from PEO122-b-PDPA43 or PHPMA64-b-PDPA72, respectively. Such a behavior was confirmed among different cell lines, with assemblies being internalized to a higher degree in cancer (HeLa) as compared to healthy (Telo-RF) cells. This fact was mainly attributed to the stronger binding of PMPC to cell membranes. Therefore, cellular uptake of nanoparticles at the sub-100 nm size range may be chiefly governed by the chemical nature of the stabilizing layer rather than particles size and/or shell thickness.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EouVxA4R8gRTHduyEXRvxkipYAOvIcccQ6sSR7Sy6QdyBG3ISUhVYolnMYv7vl-ZD6Cwls5TQ9ELpMLOqe2mHxs9kTfg4e2iaZpQkWU7lPpoSyVkiuWATdBTCGyGkYLw4RBNaMJbTLJ-i93vVuV752GgLXx-fJViL77oIXunYuC5c4sfBG6UBl6_QNiH6Db4yBnQM2HU4vo6HkRms8vi5j2oN2Bm8aJx2ba9iU1vAC-v0Gpeud3bTgsfzEKCtbQPhBB0YZQOc_uxj9Hx99VTeJsuHm7tyvkwUz9KYSEo4JWJVZ1IDyUy9yoEJQaXIFedi_GQlZWGMEZqClkyCkJLQQgnCjMpTdoz4rld7F4IHU_W-aZXfVCmptjqrUWf1q7P60Tli5zusH-oWVn_Qr78xQHaBLf7mBt-NX_zf-Q3xIIfD</recordid><startdate>20180206</startdate><enddate>20180206</enddate><creator>de Castro, Carlos E</creator><creator>Ribeiro, Caroline A. S</creator><creator>Alavarse, Alex C</creator><creator>Albuquerque, Lindomar J. C</creator><creator>da Silva, Maria C. C</creator><creator>Jäger, Eliézer</creator><creator>Surman, František</creator><creator>Schmidt, Vanessa</creator><creator>Giacomelli, Cristiano</creator><creator>Giacomelli, Fernando C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6872-9354</orcidid></search><sort><creationdate>20180206</creationdate><title>Nanoparticle–Cell Interactions: Surface Chemistry Effects on the Cellular Uptake of Biocompatible Block Copolymer Assemblies</title><author>de Castro, Carlos E ; Ribeiro, Caroline A. S ; Alavarse, Alex C ; Albuquerque, Lindomar J. C ; da Silva, Maria C. C ; Jäger, Eliézer ; Surman, František ; Schmidt, Vanessa ; Giacomelli, Cristiano ; Giacomelli, Fernando C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-7204206db57ce05fbd8e3662768a446258d779fff6c2ec737e677029a603fa813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Castro, Carlos E</creatorcontrib><creatorcontrib>Ribeiro, Caroline A. S</creatorcontrib><creatorcontrib>Alavarse, Alex C</creatorcontrib><creatorcontrib>Albuquerque, Lindomar J. C</creatorcontrib><creatorcontrib>da Silva, Maria C. C</creatorcontrib><creatorcontrib>Jäger, Eliézer</creatorcontrib><creatorcontrib>Surman, František</creatorcontrib><creatorcontrib>Schmidt, Vanessa</creatorcontrib><creatorcontrib>Giacomelli, Cristiano</creatorcontrib><creatorcontrib>Giacomelli, Fernando C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Castro, Carlos E</au><au>Ribeiro, Caroline A. S</au><au>Alavarse, Alex C</au><au>Albuquerque, Lindomar J. C</au><au>da Silva, Maria C. C</au><au>Jäger, Eliézer</au><au>Surman, František</au><au>Schmidt, Vanessa</au><au>Giacomelli, Cristiano</au><au>Giacomelli, Fernando C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle–Cell Interactions: Surface Chemistry Effects on the Cellular Uptake of Biocompatible Block Copolymer Assemblies</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2018-02-06</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>2180</spage><epage>2188</epage><pages>2180-2188</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The development of nanovehicles for intracellular drug delivery is strongly bound to the understating and control of nanoparticles cellular uptake process, which in turn is governed by surface chemistry. In this study, we explored the synthesis, characterization, and cellular uptake of block copolymer assemblies consisting of a pH-responsive poly­[2-(diisopropyl­amino)­ethyl methacrylate] (PDPA) core stabilized by three different biocompatible hydrophilic shells (a zwitterionic type poly­(2-methacryl­oyloxyethyl phosphorylcholine) (PMPC) layer, a highly hydrated poly­(ethylene oxide) (PEO) layer with stealth effect, and an also proven nontoxic and nonimmunogenic poly­(N-(2-hydroxypropyl)­methacrylamide) (PHPMA) layer). All particles had a spherical core–shell structure. The largest particles with the thickest hydrophilic stabilizing shell obtained from PMPC40-b-PDPA70 were internalized to a higher level than those smaller in size and stabilized by PEO or PHPMA and produced from PEO122-b-PDPA43 or PHPMA64-b-PDPA72, respectively. Such a behavior was confirmed among different cell lines, with assemblies being internalized to a higher degree in cancer (HeLa) as compared to healthy (Telo-RF) cells. This fact was mainly attributed to the stronger binding of PMPC to cell membranes. Therefore, cellular uptake of nanoparticles at the sub-100 nm size range may be chiefly governed by the chemical nature of the stabilizing layer rather than particles size and/or shell thickness.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29338258</pmid><doi>10.1021/acs.langmuir.7b04040</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6872-9354</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2018-02, Vol.34 (5), p.2180-2188
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_acs_langmuir_7b04040
source ACS Publications
title Nanoparticle–Cell Interactions: Surface Chemistry Effects on the Cellular Uptake of Biocompatible Block Copolymer Assemblies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%E2%80%93Cell%20Interactions:%20Surface%20Chemistry%20Effects%20on%20the%20Cellular%20Uptake%20of%20Biocompatible%20Block%20Copolymer%20Assemblies&rft.jtitle=Langmuir&rft.au=de%20Castro,%20Carlos%20E&rft.date=2018-02-06&rft.volume=34&rft.issue=5&rft.spage=2180&rft.epage=2188&rft.pages=2180-2188&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.7b04040&rft_dat=%3Cacs_cross%3Eb6143162%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29338258&rfr_iscdi=true