Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr 3 Perovskite Nanostrips
Size control is critical in the synthesis of quantum-confined semiconductor nanocrystals, otherwise known as quantum dots. The achievement of size-uniformity and narrow spectral line-width in quantum dots conventionally relies on a very precise kinetic control of the reactions, where reaction time p...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2020-03, Vol.11 (6), p.2036-2043 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2043 |
---|---|
container_issue | 6 |
container_start_page | 2036 |
container_title | The journal of physical chemistry letters |
container_volume | 11 |
creator | Leng, Junfu Wang, Tian Zhao, Xiaofei Ong, Evon Woan Yuann Zhu, Baisheng Ng, Jun De Andrew Wong, Ying-Chieh Khoo, Khoong Hong Tamada, Kaoru Tan, Zhi-Kuang |
description | Size control is critical in the synthesis of quantum-confined semiconductor nanocrystals, otherwise known as quantum dots. The achievement of size-uniformity and narrow spectral line-width in quantum dots conventionally relies on a very precise kinetic control of the reactions, where reaction time plays a significant role in defining the final crystal sizes and distribution. Here, we show that synthesis of quantum-confined perovskite nanostrips could be achieved through a thermodynamically controlled reaction, using a low-temperature and ligand-rich approach. The nanostrip growth proceeds through an initial one-dimensional (1D) nanorod stage, followed by the lateral widening of the rod to form a two-dimensional (2D) nanostrip. The spectral characteristics of the final product remain unchanged after prolonged reaction, indicating no signs of crystal ripening and confirming the thermodynamic nature of this reaction. The CsPbBr
perovskite nanostrips were highly uniform and emit at a deep-blue wavelength of 462 nm with a remarkably narrow line-width of 13 nm. This corresponds to color coordinates of (0.136, 0.049) on the CIE 1931 color space, which fulfils the stringent Rec. 2020 standard for next-generation color displays. The well-passivated nanostrips also possess negligible defects and provide a near-unity photoluminescence quantum yield at 94%. Crucially, the achievement of blue emission through a pure-halide perovskite circumvents the problems of spectral instability that are frequently experienced in mixed-halide perovskite systems. The convenience and scalability of our thermodynamic approach, coupled with the excellent optical attributes, would likely enable these quantum-confined perovskite systems to be the preferred method toward color control in trichromatic display applications. |
doi_str_mv | 10.1021/acs.jpclett.9b03873 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_9b03873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32090569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1179-1c22f82916d82df9b1654541c57a56094a7feeaf17a5d63bca0335e942a80f7b3</originalsourceid><addsrcrecordid>eNpNkN1KwzAYhoMobk6vQJDcQGd-2iY5dMU_GDpxHpc0TbbMNi1JKuzurWyKR-_3wve8Bw8A1xjNMSL4Vqow3_Wq0THORYUoZ_QETLFIecIwz07_3RNwEcIOoVwgzs7BhBIkUJaLKdist9q3Xb13srUKFp2LvmugdTBuNXzfuzGCDbAz8G2QLg5tMv4Y63QNF82gk_vWxmjdBhZhVS08pHClffcVPm3U8EW6LkRv-3AJzoxsgr465gx8PNyvi6dk-fr4XNwtE4UxEwlWhBhOBM5rTmojKpxnaZZilTGZ5UikkhmtpcFjrXNaKYkozbRIieTIsIrOAD3sKt-F4LUpe29b6fclRuWPtnLUVh61lUdtI3VzoPqhanX9x_x6ot-HnG1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr 3 Perovskite Nanostrips</title><source>ACS Publications</source><creator>Leng, Junfu ; Wang, Tian ; Zhao, Xiaofei ; Ong, Evon Woan Yuann ; Zhu, Baisheng ; Ng, Jun De Andrew ; Wong, Ying-Chieh ; Khoo, Khoong Hong ; Tamada, Kaoru ; Tan, Zhi-Kuang</creator><creatorcontrib>Leng, Junfu ; Wang, Tian ; Zhao, Xiaofei ; Ong, Evon Woan Yuann ; Zhu, Baisheng ; Ng, Jun De Andrew ; Wong, Ying-Chieh ; Khoo, Khoong Hong ; Tamada, Kaoru ; Tan, Zhi-Kuang</creatorcontrib><description>Size control is critical in the synthesis of quantum-confined semiconductor nanocrystals, otherwise known as quantum dots. The achievement of size-uniformity and narrow spectral line-width in quantum dots conventionally relies on a very precise kinetic control of the reactions, where reaction time plays a significant role in defining the final crystal sizes and distribution. Here, we show that synthesis of quantum-confined perovskite nanostrips could be achieved through a thermodynamically controlled reaction, using a low-temperature and ligand-rich approach. The nanostrip growth proceeds through an initial one-dimensional (1D) nanorod stage, followed by the lateral widening of the rod to form a two-dimensional (2D) nanostrip. The spectral characteristics of the final product remain unchanged after prolonged reaction, indicating no signs of crystal ripening and confirming the thermodynamic nature of this reaction. The CsPbBr
perovskite nanostrips were highly uniform and emit at a deep-blue wavelength of 462 nm with a remarkably narrow line-width of 13 nm. This corresponds to color coordinates of (0.136, 0.049) on the CIE 1931 color space, which fulfils the stringent Rec. 2020 standard for next-generation color displays. The well-passivated nanostrips also possess negligible defects and provide a near-unity photoluminescence quantum yield at 94%. Crucially, the achievement of blue emission through a pure-halide perovskite circumvents the problems of spectral instability that are frequently experienced in mixed-halide perovskite systems. The convenience and scalability of our thermodynamic approach, coupled with the excellent optical attributes, would likely enable these quantum-confined perovskite systems to be the preferred method toward color control in trichromatic display applications.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b03873</identifier><identifier>PMID: 32090569</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry letters, 2020-03, Vol.11 (6), p.2036-2043</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1179-1c22f82916d82df9b1654541c57a56094a7feeaf17a5d63bca0335e942a80f7b3</citedby><cites>FETCH-LOGICAL-c1179-1c22f82916d82df9b1654541c57a56094a7feeaf17a5d63bca0335e942a80f7b3</cites><orcidid>0000-0003-1399-1790 ; 0000-0002-4628-1202 ; 0000-0003-2618-9924 ; 0000-0002-2635-3563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2752,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32090569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leng, Junfu</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Zhao, Xiaofei</creatorcontrib><creatorcontrib>Ong, Evon Woan Yuann</creatorcontrib><creatorcontrib>Zhu, Baisheng</creatorcontrib><creatorcontrib>Ng, Jun De Andrew</creatorcontrib><creatorcontrib>Wong, Ying-Chieh</creatorcontrib><creatorcontrib>Khoo, Khoong Hong</creatorcontrib><creatorcontrib>Tamada, Kaoru</creatorcontrib><creatorcontrib>Tan, Zhi-Kuang</creatorcontrib><title>Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr 3 Perovskite Nanostrips</title><title>The journal of physical chemistry letters</title><addtitle>J Phys Chem Lett</addtitle><description>Size control is critical in the synthesis of quantum-confined semiconductor nanocrystals, otherwise known as quantum dots. The achievement of size-uniformity and narrow spectral line-width in quantum dots conventionally relies on a very precise kinetic control of the reactions, where reaction time plays a significant role in defining the final crystal sizes and distribution. Here, we show that synthesis of quantum-confined perovskite nanostrips could be achieved through a thermodynamically controlled reaction, using a low-temperature and ligand-rich approach. The nanostrip growth proceeds through an initial one-dimensional (1D) nanorod stage, followed by the lateral widening of the rod to form a two-dimensional (2D) nanostrip. The spectral characteristics of the final product remain unchanged after prolonged reaction, indicating no signs of crystal ripening and confirming the thermodynamic nature of this reaction. The CsPbBr
perovskite nanostrips were highly uniform and emit at a deep-blue wavelength of 462 nm with a remarkably narrow line-width of 13 nm. This corresponds to color coordinates of (0.136, 0.049) on the CIE 1931 color space, which fulfils the stringent Rec. 2020 standard for next-generation color displays. The well-passivated nanostrips also possess negligible defects and provide a near-unity photoluminescence quantum yield at 94%. Crucially, the achievement of blue emission through a pure-halide perovskite circumvents the problems of spectral instability that are frequently experienced in mixed-halide perovskite systems. The convenience and scalability of our thermodynamic approach, coupled with the excellent optical attributes, would likely enable these quantum-confined perovskite systems to be the preferred method toward color control in trichromatic display applications.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkN1KwzAYhoMobk6vQJDcQGd-2iY5dMU_GDpxHpc0TbbMNi1JKuzurWyKR-_3wve8Bw8A1xjNMSL4Vqow3_Wq0THORYUoZ_QETLFIecIwz07_3RNwEcIOoVwgzs7BhBIkUJaLKdist9q3Xb13srUKFp2LvmugdTBuNXzfuzGCDbAz8G2QLg5tMv4Y63QNF82gk_vWxmjdBhZhVS08pHClffcVPm3U8EW6LkRv-3AJzoxsgr465gx8PNyvi6dk-fr4XNwtE4UxEwlWhBhOBM5rTmojKpxnaZZilTGZ5UikkhmtpcFjrXNaKYkozbRIieTIsIrOAD3sKt-F4LUpe29b6fclRuWPtnLUVh61lUdtI3VzoPqhanX9x_x6ot-HnG1g</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Leng, Junfu</creator><creator>Wang, Tian</creator><creator>Zhao, Xiaofei</creator><creator>Ong, Evon Woan Yuann</creator><creator>Zhu, Baisheng</creator><creator>Ng, Jun De Andrew</creator><creator>Wong, Ying-Chieh</creator><creator>Khoo, Khoong Hong</creator><creator>Tamada, Kaoru</creator><creator>Tan, Zhi-Kuang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1399-1790</orcidid><orcidid>https://orcid.org/0000-0002-4628-1202</orcidid><orcidid>https://orcid.org/0000-0003-2618-9924</orcidid><orcidid>https://orcid.org/0000-0002-2635-3563</orcidid></search><sort><creationdate>20200319</creationdate><title>Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr 3 Perovskite Nanostrips</title><author>Leng, Junfu ; Wang, Tian ; Zhao, Xiaofei ; Ong, Evon Woan Yuann ; Zhu, Baisheng ; Ng, Jun De Andrew ; Wong, Ying-Chieh ; Khoo, Khoong Hong ; Tamada, Kaoru ; Tan, Zhi-Kuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1179-1c22f82916d82df9b1654541c57a56094a7feeaf17a5d63bca0335e942a80f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Junfu</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Zhao, Xiaofei</creatorcontrib><creatorcontrib>Ong, Evon Woan Yuann</creatorcontrib><creatorcontrib>Zhu, Baisheng</creatorcontrib><creatorcontrib>Ng, Jun De Andrew</creatorcontrib><creatorcontrib>Wong, Ying-Chieh</creatorcontrib><creatorcontrib>Khoo, Khoong Hong</creatorcontrib><creatorcontrib>Tamada, Kaoru</creatorcontrib><creatorcontrib>Tan, Zhi-Kuang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Junfu</au><au>Wang, Tian</au><au>Zhao, Xiaofei</au><au>Ong, Evon Woan Yuann</au><au>Zhu, Baisheng</au><au>Ng, Jun De Andrew</au><au>Wong, Ying-Chieh</au><au>Khoo, Khoong Hong</au><au>Tamada, Kaoru</au><au>Tan, Zhi-Kuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr 3 Perovskite Nanostrips</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J Phys Chem Lett</addtitle><date>2020-03-19</date><risdate>2020</risdate><volume>11</volume><issue>6</issue><spage>2036</spage><epage>2043</epage><pages>2036-2043</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Size control is critical in the synthesis of quantum-confined semiconductor nanocrystals, otherwise known as quantum dots. The achievement of size-uniformity and narrow spectral line-width in quantum dots conventionally relies on a very precise kinetic control of the reactions, where reaction time plays a significant role in defining the final crystal sizes and distribution. Here, we show that synthesis of quantum-confined perovskite nanostrips could be achieved through a thermodynamically controlled reaction, using a low-temperature and ligand-rich approach. The nanostrip growth proceeds through an initial one-dimensional (1D) nanorod stage, followed by the lateral widening of the rod to form a two-dimensional (2D) nanostrip. The spectral characteristics of the final product remain unchanged after prolonged reaction, indicating no signs of crystal ripening and confirming the thermodynamic nature of this reaction. The CsPbBr
perovskite nanostrips were highly uniform and emit at a deep-blue wavelength of 462 nm with a remarkably narrow line-width of 13 nm. This corresponds to color coordinates of (0.136, 0.049) on the CIE 1931 color space, which fulfils the stringent Rec. 2020 standard for next-generation color displays. The well-passivated nanostrips also possess negligible defects and provide a near-unity photoluminescence quantum yield at 94%. Crucially, the achievement of blue emission through a pure-halide perovskite circumvents the problems of spectral instability that are frequently experienced in mixed-halide perovskite systems. The convenience and scalability of our thermodynamic approach, coupled with the excellent optical attributes, would likely enable these quantum-confined perovskite systems to be the preferred method toward color control in trichromatic display applications.</abstract><cop>United States</cop><pmid>32090569</pmid><doi>10.1021/acs.jpclett.9b03873</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1399-1790</orcidid><orcidid>https://orcid.org/0000-0002-4628-1202</orcidid><orcidid>https://orcid.org/0000-0003-2618-9924</orcidid><orcidid>https://orcid.org/0000-0002-2635-3563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2020-03, Vol.11 (6), p.2036-2043 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpclett_9b03873 |
source | ACS Publications |
title | Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr 3 Perovskite Nanostrips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20Control%20in%20the%20Synthesis%20of%20Quantum-Confined%20Blue-Emitting%20CsPbBr%203%20Perovskite%20Nanostrips&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Leng,%20Junfu&rft.date=2020-03-19&rft.volume=11&rft.issue=6&rft.spage=2036&rft.epage=2043&rft.pages=2036-2043&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b03873&rft_dat=%3Cpubmed_cross%3E32090569%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32090569&rfr_iscdi=true |