Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)
Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction prob...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2017-05, Vol.8 (10), p.2131-2136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2136 |
---|---|
container_issue | 10 |
container_start_page | 2131 |
container_title | The journal of physical chemistry letters |
container_volume | 8 |
creator | Shakouri, Khosrow Behler, Jörg Meyer, Jörg Kroes, Geert-Jan |
description | Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N
+ Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10
to be computed, showing good agreement with experimental results. |
doi_str_mv | 10.1021/acs.jpclett.7b00784 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_7b00784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28441867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</originalsourceid><addsrcrecordid>eNpNkFFLwzAURoMobk5_gSB5VKTzJmmT1Lex6RTGlKnPJU0T7dzakqTK_r2VbeLTuXA538NB6JzAkAAlN0r74bLRKxPCUOQAQsYHqE_SWEaCyOTw391DJ94vAXgKUhyjHpVxTCQXffQ-0rp1Khg8Nx1XHcJ37T7xxHjtyiaUdYVri19aZ5U2-PmjrurK47LCC6N0KL8Mniof7f-TTaXWpfa3eI4pvsaL9hIAyNUpOrJq5c3ZjgP0dn_3On6IZk_Tx_FoFmkKNER5YQ3XCZEkNypOmEpFwbRIWcJSC6TgOVcAhlMGQIW1jMo8iQWXqbaJsIYNENvuald774zNGleuldtkBLLfbFmXLdtly3bZOutiazVtvjbFn7PvxH4AgLBqzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</title><source>ACS Publications</source><creator>Shakouri, Khosrow ; Behler, Jörg ; Meyer, Jörg ; Kroes, Geert-Jan</creator><creatorcontrib>Shakouri, Khosrow ; Behler, Jörg ; Meyer, Jörg ; Kroes, Geert-Jan</creatorcontrib><description>Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N
+ Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10
to be computed, showing good agreement with experimental results.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.7b00784</identifier><identifier>PMID: 28441867</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry letters, 2017-05, Vol.8 (10), p.2131-2136</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</citedby><cites>FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</cites><orcidid>0000-0002-4913-4689 ; 0000-0002-5550-9731 ; 0000-0003-0146-730X ; 0000-0002-1220-1542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28441867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shakouri, Khosrow</creatorcontrib><creatorcontrib>Behler, Jörg</creatorcontrib><creatorcontrib>Meyer, Jörg</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><title>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</title><title>The journal of physical chemistry letters</title><addtitle>J Phys Chem Lett</addtitle><description>Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N
+ Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10
to be computed, showing good agreement with experimental results.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAURoMobk5_gSB5VKTzJmmT1Lex6RTGlKnPJU0T7dzakqTK_r2VbeLTuXA538NB6JzAkAAlN0r74bLRKxPCUOQAQsYHqE_SWEaCyOTw391DJ94vAXgKUhyjHpVxTCQXffQ-0rp1Khg8Nx1XHcJ37T7xxHjtyiaUdYVri19aZ5U2-PmjrurK47LCC6N0KL8Mniof7f-TTaXWpfa3eI4pvsaL9hIAyNUpOrJq5c3ZjgP0dn_3On6IZk_Tx_FoFmkKNER5YQ3XCZEkNypOmEpFwbRIWcJSC6TgOVcAhlMGQIW1jMo8iQWXqbaJsIYNENvuald774zNGleuldtkBLLfbFmXLdtly3bZOutiazVtvjbFn7PvxH4AgLBqzA</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Shakouri, Khosrow</creator><creator>Behler, Jörg</creator><creator>Meyer, Jörg</creator><creator>Kroes, Geert-Jan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0002-5550-9731</orcidid><orcidid>https://orcid.org/0000-0003-0146-730X</orcidid><orcidid>https://orcid.org/0000-0002-1220-1542</orcidid></search><sort><creationdate>20170518</creationdate><title>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</title><author>Shakouri, Khosrow ; Behler, Jörg ; Meyer, Jörg ; Kroes, Geert-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakouri, Khosrow</creatorcontrib><creatorcontrib>Behler, Jörg</creatorcontrib><creatorcontrib>Meyer, Jörg</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakouri, Khosrow</au><au>Behler, Jörg</au><au>Meyer, Jörg</au><au>Kroes, Geert-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J Phys Chem Lett</addtitle><date>2017-05-18</date><risdate>2017</risdate><volume>8</volume><issue>10</issue><spage>2131</spage><epage>2136</epage><pages>2131-2136</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N
+ Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10
to be computed, showing good agreement with experimental results.</abstract><cop>United States</cop><pmid>28441867</pmid><doi>10.1021/acs.jpclett.7b00784</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0002-5550-9731</orcidid><orcidid>https://orcid.org/0000-0003-0146-730X</orcidid><orcidid>https://orcid.org/0000-0002-1220-1542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2017-05, Vol.8 (10), p.2131-2136 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpclett_7b00784 |
source | ACS Publications |
title | Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Neural%20Network%20Description%20of%20Surface%20Phonons%20in%20Reactive%20Gas-Surface%20Dynamics:%20N%202%20+%20Ru(0001)&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Shakouri,%20Khosrow&rft.date=2017-05-18&rft.volume=8&rft.issue=10&rft.spage=2131&rft.epage=2136&rft.pages=2131-2136&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.7b00784&rft_dat=%3Cpubmed_cross%3E28441867%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28441867&rfr_iscdi=true |