Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)

Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2017-05, Vol.8 (10), p.2131-2136
Hauptverfasser: Shakouri, Khosrow, Behler, Jörg, Meyer, Jörg, Kroes, Geert-Jan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2136
container_issue 10
container_start_page 2131
container_title The journal of physical chemistry letters
container_volume 8
creator Shakouri, Khosrow
Behler, Jörg
Meyer, Jörg
Kroes, Geert-Jan
description Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N + Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10 to be computed, showing good agreement with experimental results.
doi_str_mv 10.1021/acs.jpclett.7b00784
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_7b00784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28441867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</originalsourceid><addsrcrecordid>eNpNkFFLwzAURoMobk5_gSB5VKTzJmmT1Lex6RTGlKnPJU0T7dzakqTK_r2VbeLTuXA538NB6JzAkAAlN0r74bLRKxPCUOQAQsYHqE_SWEaCyOTw391DJ94vAXgKUhyjHpVxTCQXffQ-0rp1Khg8Nx1XHcJ37T7xxHjtyiaUdYVri19aZ5U2-PmjrurK47LCC6N0KL8Mniof7f-TTaXWpfa3eI4pvsaL9hIAyNUpOrJq5c3ZjgP0dn_3On6IZk_Tx_FoFmkKNER5YQ3XCZEkNypOmEpFwbRIWcJSC6TgOVcAhlMGQIW1jMo8iQWXqbaJsIYNENvuald774zNGleuldtkBLLfbFmXLdtly3bZOutiazVtvjbFn7PvxH4AgLBqzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</title><source>ACS Publications</source><creator>Shakouri, Khosrow ; Behler, Jörg ; Meyer, Jörg ; Kroes, Geert-Jan</creator><creatorcontrib>Shakouri, Khosrow ; Behler, Jörg ; Meyer, Jörg ; Kroes, Geert-Jan</creatorcontrib><description>Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N + Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10 to be computed, showing good agreement with experimental results.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.7b00784</identifier><identifier>PMID: 28441867</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry letters, 2017-05, Vol.8 (10), p.2131-2136</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</citedby><cites>FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</cites><orcidid>0000-0002-4913-4689 ; 0000-0002-5550-9731 ; 0000-0003-0146-730X ; 0000-0002-1220-1542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28441867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shakouri, Khosrow</creatorcontrib><creatorcontrib>Behler, Jörg</creatorcontrib><creatorcontrib>Meyer, Jörg</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><title>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</title><title>The journal of physical chemistry letters</title><addtitle>J Phys Chem Lett</addtitle><description>Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N + Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10 to be computed, showing good agreement with experimental results.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAURoMobk5_gSB5VKTzJmmT1Lex6RTGlKnPJU0T7dzakqTK_r2VbeLTuXA538NB6JzAkAAlN0r74bLRKxPCUOQAQsYHqE_SWEaCyOTw391DJ94vAXgKUhyjHpVxTCQXffQ-0rp1Khg8Nx1XHcJ37T7xxHjtyiaUdYVri19aZ5U2-PmjrurK47LCC6N0KL8Mniof7f-TTaXWpfa3eI4pvsaL9hIAyNUpOrJq5c3ZjgP0dn_3On6IZk_Tx_FoFmkKNER5YQ3XCZEkNypOmEpFwbRIWcJSC6TgOVcAhlMGQIW1jMo8iQWXqbaJsIYNENvuald774zNGleuldtkBLLfbFmXLdtly3bZOutiazVtvjbFn7PvxH4AgLBqzA</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Shakouri, Khosrow</creator><creator>Behler, Jörg</creator><creator>Meyer, Jörg</creator><creator>Kroes, Geert-Jan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0002-5550-9731</orcidid><orcidid>https://orcid.org/0000-0003-0146-730X</orcidid><orcidid>https://orcid.org/0000-0002-1220-1542</orcidid></search><sort><creationdate>20170518</creationdate><title>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</title><author>Shakouri, Khosrow ; Behler, Jörg ; Meyer, Jörg ; Kroes, Geert-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-bdfe6c5181bea453a97d3c793539f01d6b6a00e6230027ff328b547689cf57fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakouri, Khosrow</creatorcontrib><creatorcontrib>Behler, Jörg</creatorcontrib><creatorcontrib>Meyer, Jörg</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakouri, Khosrow</au><au>Behler, Jörg</au><au>Meyer, Jörg</au><au>Kroes, Geert-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J Phys Chem Lett</addtitle><date>2017-05-18</date><risdate>2017</risdate><volume>8</volume><issue>10</issue><spage>2131</spage><epage>2136</epage><pages>2131-2136</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N + Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10 to be computed, showing good agreement with experimental results.</abstract><cop>United States</cop><pmid>28441867</pmid><doi>10.1021/acs.jpclett.7b00784</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0002-5550-9731</orcidid><orcidid>https://orcid.org/0000-0003-0146-730X</orcidid><orcidid>https://orcid.org/0000-0002-1220-1542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2017-05, Vol.8 (10), p.2131-2136
issn 1948-7185
1948-7185
language eng
recordid cdi_crossref_primary_10_1021_acs_jpclett_7b00784
source ACS Publications
title Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Neural%20Network%20Description%20of%20Surface%20Phonons%20in%20Reactive%20Gas-Surface%20Dynamics:%20N%202%20+%20Ru(0001)&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Shakouri,%20Khosrow&rft.date=2017-05-18&rft.volume=8&rft.issue=10&rft.spage=2131&rft.epage=2136&rft.pages=2131-2136&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.7b00784&rft_dat=%3Cpubmed_cross%3E28441867%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28441867&rfr_iscdi=true