Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces

Stepped well-ordered semiconductor surfaces are important as nanotemplates for the fabrication of 1D nanostructures. Therefore, a detailed understanding of the underlying stepped substrates is crucial for advances in this field. Although measurements of step edges are challenging for scanning force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2016-02, Vol.7 (3), p.426-430
Hauptverfasser: Pérez León, Carmen, Drees, Holger, Wippermann, Stefan Martin, Marz, Michael, Hoffmann-Vogel, Regina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 3
container_start_page 426
container_title The journal of physical chemistry letters
container_volume 7
creator Pérez León, Carmen
Drees, Holger
Wippermann, Stefan Martin
Marz, Michael
Hoffmann-Vogel, Regina
description Stepped well-ordered semiconductor surfaces are important as nanotemplates for the fabrication of 1D nanostructures. Therefore, a detailed understanding of the underlying stepped substrates is crucial for advances in this field. Although measurements of step edges are challenging for scanning force microscopy (SFM), here we present simultaneous atomically resolved SFM and Kelvin probe force microscopy (KPFM) images of a silicon vicinal surface. We find that the local contact potential difference is large at the bottom of the steps and at the restatoms on the terraces, whereas it drops at the upper part of the steps and at the adatoms on the terraces. For the interpretation of the data we performed density functional theory (DFT) calculations of the surface dipole distribution. The DFT images accurately reproduce the experiments even without including the tip in the calculations. This underlines that the high-resolution KPFM images are closely related to intrinsic properties of the surface and not only to tip–surface interactions.
doi_str_mv 10.1021/acs.jpclett.5b02650
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_5b02650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a910154263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-6f72b5e79226de6574badc38e79e2af9e5df3aa6a9be0e39e5fdbd03955caaac3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwBEgoL5DWP7WTHKvyV1GJQ-Ecre11SZU0ke0ceHtSWhAnTrO7mhlpP0JuGZ0yytkMTJjuOlNjjFOpKVeSnpExK-Z5mrFcnv-ZR-QqhB2lqqB5dklGXGUyl1SMycsitk1l0o2BGpNVA9tqv01al8QPTDa9d2Awua-6tj5IiL7Sfaza_cGyidh1aH9s4ZpcOKgD3px0Qt4fH96Wz-n69Wm1XKxTmDMWU-UyriVmBefKopLZXIM1Ih8uyMEVKK0TAAoKjRTFsDurLRWFlAYAjJgQcew1vg3Boys7XzXgP0tGywOackBTntCUJzRD6u6Y6nrdoP3N_LAYDLOj4Tvd9n4_PPFv5RfZx3Q0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces</title><source>ACS Publications</source><creator>Pérez León, Carmen ; Drees, Holger ; Wippermann, Stefan Martin ; Marz, Michael ; Hoffmann-Vogel, Regina</creator><creatorcontrib>Pérez León, Carmen ; Drees, Holger ; Wippermann, Stefan Martin ; Marz, Michael ; Hoffmann-Vogel, Regina</creatorcontrib><description>Stepped well-ordered semiconductor surfaces are important as nanotemplates for the fabrication of 1D nanostructures. Therefore, a detailed understanding of the underlying stepped substrates is crucial for advances in this field. Although measurements of step edges are challenging for scanning force microscopy (SFM), here we present simultaneous atomically resolved SFM and Kelvin probe force microscopy (KPFM) images of a silicon vicinal surface. We find that the local contact potential difference is large at the bottom of the steps and at the restatoms on the terraces, whereas it drops at the upper part of the steps and at the adatoms on the terraces. For the interpretation of the data we performed density functional theory (DFT) calculations of the surface dipole distribution. The DFT images accurately reproduce the experiments even without including the tip in the calculations. This underlines that the high-resolution KPFM images are closely related to intrinsic properties of the surface and not only to tip–surface interactions.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b02650</identifier><identifier>PMID: 26758503</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2016-02, Vol.7 (3), p.426-430</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-6f72b5e79226de6574badc38e79e2af9e5df3aa6a9be0e39e5fdbd03955caaac3</citedby><cites>FETCH-LOGICAL-a411t-6f72b5e79226de6574badc38e79e2af9e5df3aa6a9be0e39e5fdbd03955caaac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b02650$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.5b02650$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26758503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez León, Carmen</creatorcontrib><creatorcontrib>Drees, Holger</creatorcontrib><creatorcontrib>Wippermann, Stefan Martin</creatorcontrib><creatorcontrib>Marz, Michael</creatorcontrib><creatorcontrib>Hoffmann-Vogel, Regina</creatorcontrib><title>Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Stepped well-ordered semiconductor surfaces are important as nanotemplates for the fabrication of 1D nanostructures. Therefore, a detailed understanding of the underlying stepped substrates is crucial for advances in this field. Although measurements of step edges are challenging for scanning force microscopy (SFM), here we present simultaneous atomically resolved SFM and Kelvin probe force microscopy (KPFM) images of a silicon vicinal surface. We find that the local contact potential difference is large at the bottom of the steps and at the restatoms on the terraces, whereas it drops at the upper part of the steps and at the adatoms on the terraces. For the interpretation of the data we performed density functional theory (DFT) calculations of the surface dipole distribution. The DFT images accurately reproduce the experiments even without including the tip in the calculations. This underlines that the high-resolution KPFM images are closely related to intrinsic properties of the surface and not only to tip–surface interactions.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EoqXwBEgoL5DWP7WTHKvyV1GJQ-Ecre11SZU0ke0ceHtSWhAnTrO7mhlpP0JuGZ0yytkMTJjuOlNjjFOpKVeSnpExK-Z5mrFcnv-ZR-QqhB2lqqB5dklGXGUyl1SMycsitk1l0o2BGpNVA9tqv01al8QPTDa9d2Awua-6tj5IiL7Sfaza_cGyidh1aH9s4ZpcOKgD3px0Qt4fH96Wz-n69Wm1XKxTmDMWU-UyriVmBefKopLZXIM1Ih8uyMEVKK0TAAoKjRTFsDurLRWFlAYAjJgQcew1vg3Boys7XzXgP0tGywOackBTntCUJzRD6u6Y6nrdoP3N_LAYDLOj4Tvd9n4_PPFv5RfZx3Q0</recordid><startdate>20160204</startdate><enddate>20160204</enddate><creator>Pérez León, Carmen</creator><creator>Drees, Holger</creator><creator>Wippermann, Stefan Martin</creator><creator>Marz, Michael</creator><creator>Hoffmann-Vogel, Regina</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160204</creationdate><title>Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces</title><author>Pérez León, Carmen ; Drees, Holger ; Wippermann, Stefan Martin ; Marz, Michael ; Hoffmann-Vogel, Regina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-6f72b5e79226de6574badc38e79e2af9e5df3aa6a9be0e39e5fdbd03955caaac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez León, Carmen</creatorcontrib><creatorcontrib>Drees, Holger</creatorcontrib><creatorcontrib>Wippermann, Stefan Martin</creatorcontrib><creatorcontrib>Marz, Michael</creatorcontrib><creatorcontrib>Hoffmann-Vogel, Regina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez León, Carmen</au><au>Drees, Holger</au><au>Wippermann, Stefan Martin</au><au>Marz, Michael</au><au>Hoffmann-Vogel, Regina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2016-02-04</date><risdate>2016</risdate><volume>7</volume><issue>3</issue><spage>426</spage><epage>430</epage><pages>426-430</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Stepped well-ordered semiconductor surfaces are important as nanotemplates for the fabrication of 1D nanostructures. Therefore, a detailed understanding of the underlying stepped substrates is crucial for advances in this field. Although measurements of step edges are challenging for scanning force microscopy (SFM), here we present simultaneous atomically resolved SFM and Kelvin probe force microscopy (KPFM) images of a silicon vicinal surface. We find that the local contact potential difference is large at the bottom of the steps and at the restatoms on the terraces, whereas it drops at the upper part of the steps and at the adatoms on the terraces. For the interpretation of the data we performed density functional theory (DFT) calculations of the surface dipole distribution. The DFT images accurately reproduce the experiments even without including the tip in the calculations. This underlines that the high-resolution KPFM images are closely related to intrinsic properties of the surface and not only to tip–surface interactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26758503</pmid><doi>10.1021/acs.jpclett.5b02650</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2016-02, Vol.7 (3), p.426-430
issn 1948-7185
1948-7185
language eng
recordid cdi_crossref_primary_10_1021_acs_jpclett_5b02650
source ACS Publications
title Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Scale%20Imaging%20of%20the%20Surface%20Dipole%20Distribution%20of%20Stepped%20Surfaces&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Pe%CC%81rez%20Leo%CC%81n,%20Carmen&rft.date=2016-02-04&rft.volume=7&rft.issue=3&rft.spage=426&rft.epage=430&rft.pages=426-430&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b02650&rft_dat=%3Cacs_cross%3Ea910154263%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26758503&rfr_iscdi=true