Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra

Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-10, Vol.12 (39), p.9657-9661
Hauptverfasser: Roeters, Steven J, Mertig, Rolf, Lutz, Helmut, Roehrich, Adrienne, Drobny, Gary, Weidner, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9661
container_issue 39
container_start_page 9657
container_title The journal of physical chemistry letters
container_volume 12
creator Roeters, Steven J
Mertig, Rolf
Lutz, Helmut
Roehrich, Adrienne
Drobny, Gary
Weidner, Tobias
description Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.
doi_str_mv 10.1021/acs.jpclett.1c02786
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_1c02786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d205567404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwBWzmB9LacZzHkra0IJWHmrKOHHdMXRK7OI5Qv4TfJUAXrFjNjEbn6uoEwTUlI0oiOhayHe32skbvR1SSKM2Sk2BA8zgLU5rx0z_7eXDRtjtCkpxk6SD4nAj5VlmDUHjXSd85BKtgpoW3DRS6FkppA8-493qDsOLQXxNtW11rKWCGHl2jDW6gOsDUNpU22rxCYWu9CQsvPMLjwwo-tN_CeovWoe-5GoquCecO3zs08gALNOiE19ZAsUfpnbgMzpSoW7w6zmHwMr9dT-_C5dPifnqzDAWLIh-yiFQijiljMa_SOOeJqChPUrKJmcgwj3jOMSGU5GmSsxyV4qgyVAkjXMRZxIYB-82VzratQ1XunW6EO5SUlN9uy95teXRbHt321PiX-nnazpm-47_EF-LYgbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</title><source>American Chemical Society Journals</source><creator>Roeters, Steven J ; Mertig, Rolf ; Lutz, Helmut ; Roehrich, Adrienne ; Drobny, Gary ; Weidner, Tobias</creator><creatorcontrib>Roeters, Steven J ; Mertig, Rolf ; Lutz, Helmut ; Roehrich, Adrienne ; Drobny, Gary ; Weidner, Tobias</creatorcontrib><description>Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c02786</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2021-10, Vol.12 (39), p.9657-9661</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</citedby><cites>FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</cites><orcidid>0000-0002-7293-1897 ; 0000-0003-3238-2181 ; 0000-0002-7915-8542 ; 0000-0002-7083-7004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c02786$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c02786$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Roeters, Steven J</creatorcontrib><creatorcontrib>Mertig, Rolf</creatorcontrib><creatorcontrib>Lutz, Helmut</creatorcontrib><creatorcontrib>Roehrich, Adrienne</creatorcontrib><creatorcontrib>Drobny, Gary</creatorcontrib><creatorcontrib>Weidner, Tobias</creatorcontrib><title>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwBWzmB9LacZzHkra0IJWHmrKOHHdMXRK7OI5Qv4TfJUAXrFjNjEbn6uoEwTUlI0oiOhayHe32skbvR1SSKM2Sk2BA8zgLU5rx0z_7eXDRtjtCkpxk6SD4nAj5VlmDUHjXSd85BKtgpoW3DRS6FkppA8-493qDsOLQXxNtW11rKWCGHl2jDW6gOsDUNpU22rxCYWu9CQsvPMLjwwo-tN_CeovWoe-5GoquCecO3zs08gALNOiE19ZAsUfpnbgMzpSoW7w6zmHwMr9dT-_C5dPifnqzDAWLIh-yiFQijiljMa_SOOeJqChPUrKJmcgwj3jOMSGU5GmSsxyV4qgyVAkjXMRZxIYB-82VzratQ1XunW6EO5SUlN9uy95teXRbHt321PiX-nnazpm-47_EF-LYgbU</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Roeters, Steven J</creator><creator>Mertig, Rolf</creator><creator>Lutz, Helmut</creator><creator>Roehrich, Adrienne</creator><creator>Drobny, Gary</creator><creator>Weidner, Tobias</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7293-1897</orcidid><orcidid>https://orcid.org/0000-0003-3238-2181</orcidid><orcidid>https://orcid.org/0000-0002-7915-8542</orcidid><orcidid>https://orcid.org/0000-0002-7083-7004</orcidid></search><sort><creationdate>20211007</creationdate><title>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</title><author>Roeters, Steven J ; Mertig, Rolf ; Lutz, Helmut ; Roehrich, Adrienne ; Drobny, Gary ; Weidner, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roeters, Steven J</creatorcontrib><creatorcontrib>Mertig, Rolf</creatorcontrib><creatorcontrib>Lutz, Helmut</creatorcontrib><creatorcontrib>Roehrich, Adrienne</creatorcontrib><creatorcontrib>Drobny, Gary</creatorcontrib><creatorcontrib>Weidner, Tobias</creatorcontrib><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roeters, Steven J</au><au>Mertig, Rolf</au><au>Lutz, Helmut</au><au>Roehrich, Adrienne</au><au>Drobny, Gary</au><au>Weidner, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>12</volume><issue>39</issue><spage>9657</spage><epage>9661</epage><pages>9657-9661</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.1c02786</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7293-1897</orcidid><orcidid>https://orcid.org/0000-0003-3238-2181</orcidid><orcidid>https://orcid.org/0000-0002-7915-8542</orcidid><orcidid>https://orcid.org/0000-0002-7083-7004</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-10, Vol.12 (39), p.9657-9661
issn 1948-7185
1948-7185
language eng
recordid cdi_crossref_primary_10_1021_acs_jpclett_1c02786
source American Chemical Society Journals
subjects Physical Insights into Chemistry, Catalysis, and Interfaces
title Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backbone%20Structure%20of%20Diatom%20Silaffin%20Peptide%20R5%20in%20Biosilica%20Determined%20by%20Combining%20Solid-State%20NMR%20with%20Theoretical%20Sum-Frequency%20Generation%20Spectra&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Roeters,%20Steven%20J&rft.date=2021-10-07&rft.volume=12&rft.issue=39&rft.spage=9657&rft.epage=9661&rft.pages=9657-9661&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c02786&rft_dat=%3Cacs_cross%3Ed205567404%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true