Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra
Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-10, Vol.12 (39), p.9657-9661 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9661 |
---|---|
container_issue | 39 |
container_start_page | 9657 |
container_title | The journal of physical chemistry letters |
container_volume | 12 |
creator | Roeters, Steven J Mertig, Rolf Lutz, Helmut Roehrich, Adrienne Drobny, Gary Weidner, Tobias |
description | Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors. |
doi_str_mv | 10.1021/acs.jpclett.1c02786 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_1c02786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d205567404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwBWzmB9LacZzHkra0IJWHmrKOHHdMXRK7OI5Qv4TfJUAXrFjNjEbn6uoEwTUlI0oiOhayHe32skbvR1SSKM2Sk2BA8zgLU5rx0z_7eXDRtjtCkpxk6SD4nAj5VlmDUHjXSd85BKtgpoW3DRS6FkppA8-493qDsOLQXxNtW11rKWCGHl2jDW6gOsDUNpU22rxCYWu9CQsvPMLjwwo-tN_CeovWoe-5GoquCecO3zs08gALNOiE19ZAsUfpnbgMzpSoW7w6zmHwMr9dT-_C5dPifnqzDAWLIh-yiFQijiljMa_SOOeJqChPUrKJmcgwj3jOMSGU5GmSsxyV4qgyVAkjXMRZxIYB-82VzratQ1XunW6EO5SUlN9uy95teXRbHt321PiX-nnazpm-47_EF-LYgbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</title><source>American Chemical Society Journals</source><creator>Roeters, Steven J ; Mertig, Rolf ; Lutz, Helmut ; Roehrich, Adrienne ; Drobny, Gary ; Weidner, Tobias</creator><creatorcontrib>Roeters, Steven J ; Mertig, Rolf ; Lutz, Helmut ; Roehrich, Adrienne ; Drobny, Gary ; Weidner, Tobias</creatorcontrib><description>Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c02786</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2021-10, Vol.12 (39), p.9657-9661</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</citedby><cites>FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</cites><orcidid>0000-0002-7293-1897 ; 0000-0003-3238-2181 ; 0000-0002-7915-8542 ; 0000-0002-7083-7004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c02786$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c02786$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Roeters, Steven J</creatorcontrib><creatorcontrib>Mertig, Rolf</creatorcontrib><creatorcontrib>Lutz, Helmut</creatorcontrib><creatorcontrib>Roehrich, Adrienne</creatorcontrib><creatorcontrib>Drobny, Gary</creatorcontrib><creatorcontrib>Weidner, Tobias</creatorcontrib><title>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwBWzmB9LacZzHkra0IJWHmrKOHHdMXRK7OI5Qv4TfJUAXrFjNjEbn6uoEwTUlI0oiOhayHe32skbvR1SSKM2Sk2BA8zgLU5rx0z_7eXDRtjtCkpxk6SD4nAj5VlmDUHjXSd85BKtgpoW3DRS6FkppA8-493qDsOLQXxNtW11rKWCGHl2jDW6gOsDUNpU22rxCYWu9CQsvPMLjwwo-tN_CeovWoe-5GoquCecO3zs08gALNOiE19ZAsUfpnbgMzpSoW7w6zmHwMr9dT-_C5dPifnqzDAWLIh-yiFQijiljMa_SOOeJqChPUrKJmcgwj3jOMSGU5GmSsxyV4qgyVAkjXMRZxIYB-82VzratQ1XunW6EO5SUlN9uy95teXRbHt321PiX-nnazpm-47_EF-LYgbU</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Roeters, Steven J</creator><creator>Mertig, Rolf</creator><creator>Lutz, Helmut</creator><creator>Roehrich, Adrienne</creator><creator>Drobny, Gary</creator><creator>Weidner, Tobias</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7293-1897</orcidid><orcidid>https://orcid.org/0000-0003-3238-2181</orcidid><orcidid>https://orcid.org/0000-0002-7915-8542</orcidid><orcidid>https://orcid.org/0000-0002-7083-7004</orcidid></search><sort><creationdate>20211007</creationdate><title>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</title><author>Roeters, Steven J ; Mertig, Rolf ; Lutz, Helmut ; Roehrich, Adrienne ; Drobny, Gary ; Weidner, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-320ba4413345b74956ab15670d43a8e92595e6010976939eff5ef8ef6305a4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roeters, Steven J</creatorcontrib><creatorcontrib>Mertig, Rolf</creatorcontrib><creatorcontrib>Lutz, Helmut</creatorcontrib><creatorcontrib>Roehrich, Adrienne</creatorcontrib><creatorcontrib>Drobny, Gary</creatorcontrib><creatorcontrib>Weidner, Tobias</creatorcontrib><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roeters, Steven J</au><au>Mertig, Rolf</au><au>Lutz, Helmut</au><au>Roehrich, Adrienne</au><au>Drobny, Gary</au><au>Weidner, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>12</volume><issue>39</issue><spage>9657</spage><epage>9661</epage><pages>9657-9661</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5–silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.1c02786</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7293-1897</orcidid><orcidid>https://orcid.org/0000-0003-3238-2181</orcidid><orcidid>https://orcid.org/0000-0002-7915-8542</orcidid><orcidid>https://orcid.org/0000-0002-7083-7004</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2021-10, Vol.12 (39), p.9657-9661 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpclett_1c02786 |
source | American Chemical Society Journals |
subjects | Physical Insights into Chemistry, Catalysis, and Interfaces |
title | Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backbone%20Structure%20of%20Diatom%20Silaffin%20Peptide%20R5%20in%20Biosilica%20Determined%20by%20Combining%20Solid-State%20NMR%20with%20Theoretical%20Sum-Frequency%20Generation%20Spectra&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Roeters,%20Steven%20J&rft.date=2021-10-07&rft.volume=12&rft.issue=39&rft.spage=9657&rft.epage=9661&rft.pages=9657-9661&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c02786&rft_dat=%3Cacs_cross%3Ed205567404%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |