Toward a General Understanding of Exciton Self-Trapping in Metal Halide Perovskites

Self-trapped excitons (STEs) have recently been observed in several metal halide perovskites (MHPs), especially in low-dimensional ones. Despite studies that have shown that factors like dopant, chemical composition, lattice distortion, and structural and electronic dimensionality may all affect the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-11, Vol.12 (43), p.10472-10478
Hauptverfasser: Xu, Zhengwei, Jiang, Xingxing, Cai, Hua-peng, Chen, Keqiu, Yao, Xiaolong, Feng, Yexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-trapped excitons (STEs) have recently been observed in several metal halide perovskites (MHPs), especially in low-dimensional ones. Despite studies that have shown that factors like dopant, chemical composition, lattice distortion, and structural and electronic dimensionality may all affect the self-trapping of excitons, a general understanding of their mechanism of formation in MHPs is lacking. Here, we study the intrinsic and defect-induced self-trapping of excitons in three-, two-, and one-dimensional MHPs. We find that whether the free excitons could be trapped is simply determined by the competition of the energy-gap decrease and deformation-energy increase along with the lattice distortion. Both introducing halogen defects into the lattice and decreasing the dimensionality can tip the balance between them and thus facilitate the self-trapping of free excitons. This general picture of the mechanism of formation of STEs provides important insights into the design and development of high-performance white-light devices and solar cells with MHPs.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.1c02291