Room-Temperature Propylene Dehydrogenation and Linear Atomic Chain Formation on Ni(111)

The structures formed by propylene adsorption on Ni(111) at room temperature are determined by a combination of scanning tunneling microscopy and density functional theory. As a result of the interaction with the Ni(111) surface, propylene molecules are dehydrogenated and coupled into linear hydroca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-04, Vol.124 (15), p.8218-8224
Hauptverfasser: Pavlova, Tatiana V, Kovalenko, Stanislav L, Eltsov, Konstantin N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8224
container_issue 15
container_start_page 8218
container_title Journal of physical chemistry. C
container_volume 124
creator Pavlova, Tatiana V
Kovalenko, Stanislav L
Eltsov, Konstantin N
description The structures formed by propylene adsorption on Ni(111) at room temperature are determined by a combination of scanning tunneling microscopy and density functional theory. As a result of the interaction with the Ni(111) surface, propylene molecules are dehydrogenated and coupled into linear hydrocarbon chains. The length of the chains varies from 8 to 60 Å, with the most frequently observed length of 18 Å. At saturated coverage, some chains are closed in rings with a diameter of 6 Å. A C12H12 model is proposed for most often observed chains. We demonstrate the possibility of combining initial propylene molecules into chains after dehydrogenation of the CH3 fragment.
doi_str_mv 10.1021/acs.jpcc.9b11942
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_9b11942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d27094506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-b6283b618e33aafcbe9095c8787fa64d6d68f1a0606fa5067e97b4c389d059c43</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFbvHveoYOpMNtnsHku1KhQVqXgMk83GpjS7YZMe-u9NbfEmDMzAvPd4fIxdI0wQYrwn003WrTETXSDqJD5hI9QijrIkTU__7iQ7ZxddtwZIBaAYsa8P75toaZvWBuq3wfL34NvdxjrLH-xqVwb_bR31tXecXMkXtbMU-LT3TW34bEW143MfmoNimNf6BhFvL9lZRZvOXh33mH3OH5ez52jx9vQymy4iihX0USFjJQqJygpBVJnCatCpUZnKKpJJKUupKiSQICtKQWZWZ0VihNIlpNokYszgkGuC77pgq7wNdUNhlyPkezD5ACbfg8mPYAbL3cHy-_Hb4IaC_8t_AEYiZuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Room-Temperature Propylene Dehydrogenation and Linear Atomic Chain Formation on Ni(111)</title><source>ACS Publications</source><creator>Pavlova, Tatiana V ; Kovalenko, Stanislav L ; Eltsov, Konstantin N</creator><creatorcontrib>Pavlova, Tatiana V ; Kovalenko, Stanislav L ; Eltsov, Konstantin N</creatorcontrib><description>The structures formed by propylene adsorption on Ni(111) at room temperature are determined by a combination of scanning tunneling microscopy and density functional theory. As a result of the interaction with the Ni(111) surface, propylene molecules are dehydrogenated and coupled into linear hydrocarbon chains. The length of the chains varies from 8 to 60 Å, with the most frequently observed length of 18 Å. At saturated coverage, some chains are closed in rings with a diameter of 6 Å. A C12H12 model is proposed for most often observed chains. We demonstrate the possibility of combining initial propylene molecules into chains after dehydrogenation of the CH3 fragment.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b11942</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2020-04, Vol.124 (15), p.8218-8224</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-b6283b618e33aafcbe9095c8787fa64d6d68f1a0606fa5067e97b4c389d059c43</citedby><cites>FETCH-LOGICAL-a280t-b6283b618e33aafcbe9095c8787fa64d6d68f1a0606fa5067e97b4c389d059c43</cites><orcidid>0000-0002-7332-9056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b11942$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b11942$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Pavlova, Tatiana V</creatorcontrib><creatorcontrib>Kovalenko, Stanislav L</creatorcontrib><creatorcontrib>Eltsov, Konstantin N</creatorcontrib><title>Room-Temperature Propylene Dehydrogenation and Linear Atomic Chain Formation on Ni(111)</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The structures formed by propylene adsorption on Ni(111) at room temperature are determined by a combination of scanning tunneling microscopy and density functional theory. As a result of the interaction with the Ni(111) surface, propylene molecules are dehydrogenated and coupled into linear hydrocarbon chains. The length of the chains varies from 8 to 60 Å, with the most frequently observed length of 18 Å. At saturated coverage, some chains are closed in rings with a diameter of 6 Å. A C12H12 model is proposed for most often observed chains. We demonstrate the possibility of combining initial propylene molecules into chains after dehydrogenation of the CH3 fragment.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFbvHveoYOpMNtnsHku1KhQVqXgMk83GpjS7YZMe-u9NbfEmDMzAvPd4fIxdI0wQYrwn003WrTETXSDqJD5hI9QijrIkTU__7iQ7ZxddtwZIBaAYsa8P75toaZvWBuq3wfL34NvdxjrLH-xqVwb_bR31tXecXMkXtbMU-LT3TW34bEW143MfmoNimNf6BhFvL9lZRZvOXh33mH3OH5ez52jx9vQymy4iihX0USFjJQqJygpBVJnCatCpUZnKKpJJKUupKiSQICtKQWZWZ0VihNIlpNokYszgkGuC77pgq7wNdUNhlyPkezD5ACbfg8mPYAbL3cHy-_Hb4IaC_8t_AEYiZuM</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Pavlova, Tatiana V</creator><creator>Kovalenko, Stanislav L</creator><creator>Eltsov, Konstantin N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7332-9056</orcidid></search><sort><creationdate>20200416</creationdate><title>Room-Temperature Propylene Dehydrogenation and Linear Atomic Chain Formation on Ni(111)</title><author>Pavlova, Tatiana V ; Kovalenko, Stanislav L ; Eltsov, Konstantin N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-b6283b618e33aafcbe9095c8787fa64d6d68f1a0606fa5067e97b4c389d059c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlova, Tatiana V</creatorcontrib><creatorcontrib>Kovalenko, Stanislav L</creatorcontrib><creatorcontrib>Eltsov, Konstantin N</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlova, Tatiana V</au><au>Kovalenko, Stanislav L</au><au>Eltsov, Konstantin N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-Temperature Propylene Dehydrogenation and Linear Atomic Chain Formation on Ni(111)</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-04-16</date><risdate>2020</risdate><volume>124</volume><issue>15</issue><spage>8218</spage><epage>8224</epage><pages>8218-8224</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The structures formed by propylene adsorption on Ni(111) at room temperature are determined by a combination of scanning tunneling microscopy and density functional theory. As a result of the interaction with the Ni(111) surface, propylene molecules are dehydrogenated and coupled into linear hydrocarbon chains. The length of the chains varies from 8 to 60 Å, with the most frequently observed length of 18 Å. At saturated coverage, some chains are closed in rings with a diameter of 6 Å. A C12H12 model is proposed for most often observed chains. We demonstrate the possibility of combining initial propylene molecules into chains after dehydrogenation of the CH3 fragment.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b11942</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7332-9056</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-04, Vol.124 (15), p.8218-8224
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_9b11942
source ACS Publications
title Room-Temperature Propylene Dehydrogenation and Linear Atomic Chain Formation on Ni(111)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-Temperature%20Propylene%20Dehydrogenation%20and%20Linear%20Atomic%20Chain%20Formation%20on%20Ni(111)&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pavlova,%20Tatiana%20V&rft.date=2020-04-16&rft.volume=124&rft.issue=15&rft.spage=8218&rft.epage=8224&rft.pages=8218-8224&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b11942&rft_dat=%3Cacs_cross%3Ed27094506%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true