Excited-State Absorption by Linear Response Time-Dependent Density Functional Theory

Investigations of the ground and excited states absorption are very important for the development of advanced optical limiters. Linear response time-dependent density-functional theory (LR-TDDFT) has become popular for calculating absorption spectra of molecules in their ground state. However, calcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-02, Vol.124 (8), p.4693-4700
Hauptverfasser: Sheng, Xiaowei, Zhu, Hongjuan, Yin, Kai, Chen, Jichao, Wang, Jian, Wang, Chunrui, Shao, Junfeng, Chen, Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4700
container_issue 8
container_start_page 4693
container_title Journal of physical chemistry. C
container_volume 124
creator Sheng, Xiaowei
Zhu, Hongjuan
Yin, Kai
Chen, Jichao
Wang, Jian
Wang, Chunrui
Shao, Junfeng
Chen, Fei
description Investigations of the ground and excited states absorption are very important for the development of advanced optical limiters. Linear response time-dependent density-functional theory (LR-TDDFT) has become popular for calculating absorption spectra of molecules in their ground state. However, calculation for the excited state turns out to be much more complicated. In the present paper, it is shown that the transition dipole moments between two excited states can be well-estimated based on auxiliary excited-state wavefunctions extracted from the LR-TDDFT calculation. For application, the absorption spectra in zinc phthalocyanine (ZnPc), distyrylbenzene (DSB), and 3-methylthiophenes heptamer (3MT heptamer) are investigated in detail along with different density functional models, and results are compared with experimental data and other theoretical methods. The computational cost of the present method is much cheaper than other theoretical methods, such as quadratic response TDDFT.
doi_str_mv 10.1021/acs.jpcc.9b10335
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_9b10335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c939491141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-9e56f498912119b0922c0512de3cf8f014b51225a0285fa42289de1eecef23b23</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYH2JpMGrc5LvuhQkHQei5pOsEuu2lJsmD_va27ePM0M7zzDMNDyD1nKWfAH7UJ6a43JlU1Z0LICzLjSkCyyKS8_OuzxTW5CWHHmBSMixkpN9-mjdgkH1FHpMs6dL6PbedoPdCidag9fcfQdy4gLdsDJmvs0TXoIl2jC20c6PbozIToPS2_sPPDLbmyeh_w7lzn5HO7KVcvSfH2_LpaFomGnMVEoXyymcoVB85VzRSAYZJDg8LY3DKe1eMEUjPIpdUZQK4a5IgGLYgaxJyw013juxA82qr37UH7oeKsmqxUo5VqslKdrYzIwwn5TbqjH78O_6__AD76ZlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Excited-State Absorption by Linear Response Time-Dependent Density Functional Theory</title><source>ACS Publications</source><creator>Sheng, Xiaowei ; Zhu, Hongjuan ; Yin, Kai ; Chen, Jichao ; Wang, Jian ; Wang, Chunrui ; Shao, Junfeng ; Chen, Fei</creator><creatorcontrib>Sheng, Xiaowei ; Zhu, Hongjuan ; Yin, Kai ; Chen, Jichao ; Wang, Jian ; Wang, Chunrui ; Shao, Junfeng ; Chen, Fei</creatorcontrib><description>Investigations of the ground and excited states absorption are very important for the development of advanced optical limiters. Linear response time-dependent density-functional theory (LR-TDDFT) has become popular for calculating absorption spectra of molecules in their ground state. However, calculation for the excited state turns out to be much more complicated. In the present paper, it is shown that the transition dipole moments between two excited states can be well-estimated based on auxiliary excited-state wavefunctions extracted from the LR-TDDFT calculation. For application, the absorption spectra in zinc phthalocyanine (ZnPc), distyrylbenzene (DSB), and 3-methylthiophenes heptamer (3MT heptamer) are investigated in detail along with different density functional models, and results are compared with experimental data and other theoretical methods. The computational cost of the present method is much cheaper than other theoretical methods, such as quadratic response TDDFT.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b10335</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2020-02, Vol.124 (8), p.4693-4700</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-9e56f498912119b0922c0512de3cf8f014b51225a0285fa42289de1eecef23b23</citedby><cites>FETCH-LOGICAL-a280t-9e56f498912119b0922c0512de3cf8f014b51225a0285fa42289de1eecef23b23</cites><orcidid>0000-0003-0311-7741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b10335$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b10335$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Sheng, Xiaowei</creatorcontrib><creatorcontrib>Zhu, Hongjuan</creatorcontrib><creatorcontrib>Yin, Kai</creatorcontrib><creatorcontrib>Chen, Jichao</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wang, Chunrui</creatorcontrib><creatorcontrib>Shao, Junfeng</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><title>Excited-State Absorption by Linear Response Time-Dependent Density Functional Theory</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Investigations of the ground and excited states absorption are very important for the development of advanced optical limiters. Linear response time-dependent density-functional theory (LR-TDDFT) has become popular for calculating absorption spectra of molecules in their ground state. However, calculation for the excited state turns out to be much more complicated. In the present paper, it is shown that the transition dipole moments between two excited states can be well-estimated based on auxiliary excited-state wavefunctions extracted from the LR-TDDFT calculation. For application, the absorption spectra in zinc phthalocyanine (ZnPc), distyrylbenzene (DSB), and 3-methylthiophenes heptamer (3MT heptamer) are investigated in detail along with different density functional models, and results are compared with experimental data and other theoretical methods. The computational cost of the present method is much cheaper than other theoretical methods, such as quadratic response TDDFT.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYH2JpMGrc5LvuhQkHQei5pOsEuu2lJsmD_va27ePM0M7zzDMNDyD1nKWfAH7UJ6a43JlU1Z0LICzLjSkCyyKS8_OuzxTW5CWHHmBSMixkpN9-mjdgkH1FHpMs6dL6PbedoPdCidag9fcfQdy4gLdsDJmvs0TXoIl2jC20c6PbozIToPS2_sPPDLbmyeh_w7lzn5HO7KVcvSfH2_LpaFomGnMVEoXyymcoVB85VzRSAYZJDg8LY3DKe1eMEUjPIpdUZQK4a5IgGLYgaxJyw013juxA82qr37UH7oeKsmqxUo5VqslKdrYzIwwn5TbqjH78O_6__AD76ZlY</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Sheng, Xiaowei</creator><creator>Zhu, Hongjuan</creator><creator>Yin, Kai</creator><creator>Chen, Jichao</creator><creator>Wang, Jian</creator><creator>Wang, Chunrui</creator><creator>Shao, Junfeng</creator><creator>Chen, Fei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0311-7741</orcidid></search><sort><creationdate>20200227</creationdate><title>Excited-State Absorption by Linear Response Time-Dependent Density Functional Theory</title><author>Sheng, Xiaowei ; Zhu, Hongjuan ; Yin, Kai ; Chen, Jichao ; Wang, Jian ; Wang, Chunrui ; Shao, Junfeng ; Chen, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-9e56f498912119b0922c0512de3cf8f014b51225a0285fa42289de1eecef23b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Xiaowei</creatorcontrib><creatorcontrib>Zhu, Hongjuan</creatorcontrib><creatorcontrib>Yin, Kai</creatorcontrib><creatorcontrib>Chen, Jichao</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wang, Chunrui</creatorcontrib><creatorcontrib>Shao, Junfeng</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Xiaowei</au><au>Zhu, Hongjuan</au><au>Yin, Kai</au><au>Chen, Jichao</au><au>Wang, Jian</au><au>Wang, Chunrui</au><au>Shao, Junfeng</au><au>Chen, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excited-State Absorption by Linear Response Time-Dependent Density Functional Theory</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>124</volume><issue>8</issue><spage>4693</spage><epage>4700</epage><pages>4693-4700</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Investigations of the ground and excited states absorption are very important for the development of advanced optical limiters. Linear response time-dependent density-functional theory (LR-TDDFT) has become popular for calculating absorption spectra of molecules in their ground state. However, calculation for the excited state turns out to be much more complicated. In the present paper, it is shown that the transition dipole moments between two excited states can be well-estimated based on auxiliary excited-state wavefunctions extracted from the LR-TDDFT calculation. For application, the absorption spectra in zinc phthalocyanine (ZnPc), distyrylbenzene (DSB), and 3-methylthiophenes heptamer (3MT heptamer) are investigated in detail along with different density functional models, and results are compared with experimental data and other theoretical methods. The computational cost of the present method is much cheaper than other theoretical methods, such as quadratic response TDDFT.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b10335</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0311-7741</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-02, Vol.124 (8), p.4693-4700
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_9b10335
source ACS Publications
title Excited-State Absorption by Linear Response Time-Dependent Density Functional Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excited-State%20Absorption%20by%20Linear%20Response%20Time-Dependent%20Density%20Functional%20Theory&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sheng,%20Xiaowei&rft.date=2020-02-27&rft.volume=124&rft.issue=8&rft.spage=4693&rft.epage=4700&rft.pages=4693-4700&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b10335&rft_dat=%3Cacs_cross%3Ec939491141%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true