Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts

Electrocatalysts (ECs) are indispensable for high-efficiency photoelectrochemical (PEC) water splitting, but the underlying mechanism for performance modulation is still not clear. Taking the α-Fe2O3 semiconductor (SC) decorated with the cobalt oxide ECs as the model photoanode system, we demonstrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-11, Vol.123 (47), p.28753-28762
Hauptverfasser: Dai, Yawen, Cheng, Ping, Xie, Guancai, Li, Chengcheng, Akram, Muhammad Zain, Guo, Beidou, Boddula, Rajender, Shi, Xinghua, Gong, Jinlong, Gong, Jian Ru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28762
container_issue 47
container_start_page 28753
container_title Journal of physical chemistry. C
container_volume 123
creator Dai, Yawen
Cheng, Ping
Xie, Guancai
Li, Chengcheng
Akram, Muhammad Zain
Guo, Beidou
Boddula, Rajender
Shi, Xinghua
Gong, Jinlong
Gong, Jian Ru
description Electrocatalysts (ECs) are indispensable for high-efficiency photoelectrochemical (PEC) water splitting, but the underlying mechanism for performance modulation is still not clear. Taking the α-Fe2O3 semiconductor (SC) decorated with the cobalt oxide ECs as the model photoanode system, we demonstrate the opposite changes of PEC water oxidation activities by tuning the charge-storage capacity of ECs. Holes stored in the EC can increase the hole density on the photoanode surface, which can benefit the multihole surface water oxidation reaction, as well as aggravate the SC–EC interfacial charge recombination due to the Coulomb attraction. Both experimental and theoretical data prove that the EC with low hole-storage capacity brings limited interfacial charge recombination, enabling faster hole injection to improve the water oxidation activity. In contrast, the EC with high hole-storage capacity causes severe interfacial charge recombination, hindering the hole injection, thus decreasing the water oxidation activity. As a result, the PEC activity of photoanodes changes nonmonotonically with increasing surface hole density. This study can provide insightful guidance to interface design for solar energy-conversion systems.
doi_str_mv 10.1021/acs.jpcc.9b08343
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_9b08343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a236744105</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-2f5c84d01accf3183a5f6c29dcac5b891d81b181423f515de5cb42f31b7beb953</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKf3XvYH2Jk0jUsvR5lOmChM8bKcnCZtR7eUJBP67-224p1X54X3g8NDyD2jM0YT9gjoZ9sOcZYpKnnKL8iEZTyJ56kQl386nV-TG--3lApOGZ-Q6s2WhxZCs6-ij9oGq1uNwVms9a5BaKNvCNrFm65twim0wND8NKGPVB_lNbhKx5tgHVQ6yqEDPFrWRMtxBgK0vQ_-llwZaL2-G--UfD0vP_NVvH5_ec0X6xi45CFOjECZlpQBouFMchDmCZOsREChZMZKyRSTLE24EUyUWqBKkyGp5kqrTPApoedddNZ7p03RuWYHri8YLY6gigFUcQRVjKCGysO5cnLswe2HB_-P_wIlMm-P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts</title><source>ACS Publications</source><creator>Dai, Yawen ; Cheng, Ping ; Xie, Guancai ; Li, Chengcheng ; Akram, Muhammad Zain ; Guo, Beidou ; Boddula, Rajender ; Shi, Xinghua ; Gong, Jinlong ; Gong, Jian Ru</creator><creatorcontrib>Dai, Yawen ; Cheng, Ping ; Xie, Guancai ; Li, Chengcheng ; Akram, Muhammad Zain ; Guo, Beidou ; Boddula, Rajender ; Shi, Xinghua ; Gong, Jinlong ; Gong, Jian Ru</creatorcontrib><description>Electrocatalysts (ECs) are indispensable for high-efficiency photoelectrochemical (PEC) water splitting, but the underlying mechanism for performance modulation is still not clear. Taking the α-Fe2O3 semiconductor (SC) decorated with the cobalt oxide ECs as the model photoanode system, we demonstrate the opposite changes of PEC water oxidation activities by tuning the charge-storage capacity of ECs. Holes stored in the EC can increase the hole density on the photoanode surface, which can benefit the multihole surface water oxidation reaction, as well as aggravate the SC–EC interfacial charge recombination due to the Coulomb attraction. Both experimental and theoretical data prove that the EC with low hole-storage capacity brings limited interfacial charge recombination, enabling faster hole injection to improve the water oxidation activity. In contrast, the EC with high hole-storage capacity causes severe interfacial charge recombination, hindering the hole injection, thus decreasing the water oxidation activity. As a result, the PEC activity of photoanodes changes nonmonotonically with increasing surface hole density. This study can provide insightful guidance to interface design for solar energy-conversion systems.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b08343</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2019-11, Vol.123 (47), p.28753-28762</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-2f5c84d01accf3183a5f6c29dcac5b891d81b181423f515de5cb42f31b7beb953</citedby><cites>FETCH-LOGICAL-a383t-2f5c84d01accf3183a5f6c29dcac5b891d81b181423f515de5cb42f31b7beb953</cites><orcidid>0000-0001-7263-318X ; 0000-0002-3291-5200 ; 0000-0003-1512-4762 ; 0000-0001-8533-3338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b08343$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b08343$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Dai, Yawen</creatorcontrib><creatorcontrib>Cheng, Ping</creatorcontrib><creatorcontrib>Xie, Guancai</creatorcontrib><creatorcontrib>Li, Chengcheng</creatorcontrib><creatorcontrib>Akram, Muhammad Zain</creatorcontrib><creatorcontrib>Guo, Beidou</creatorcontrib><creatorcontrib>Boddula, Rajender</creatorcontrib><creatorcontrib>Shi, Xinghua</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><creatorcontrib>Gong, Jian Ru</creatorcontrib><title>Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Electrocatalysts (ECs) are indispensable for high-efficiency photoelectrochemical (PEC) water splitting, but the underlying mechanism for performance modulation is still not clear. Taking the α-Fe2O3 semiconductor (SC) decorated with the cobalt oxide ECs as the model photoanode system, we demonstrate the opposite changes of PEC water oxidation activities by tuning the charge-storage capacity of ECs. Holes stored in the EC can increase the hole density on the photoanode surface, which can benefit the multihole surface water oxidation reaction, as well as aggravate the SC–EC interfacial charge recombination due to the Coulomb attraction. Both experimental and theoretical data prove that the EC with low hole-storage capacity brings limited interfacial charge recombination, enabling faster hole injection to improve the water oxidation activity. In contrast, the EC with high hole-storage capacity causes severe interfacial charge recombination, hindering the hole injection, thus decreasing the water oxidation activity. As a result, the PEC activity of photoanodes changes nonmonotonically with increasing surface hole density. This study can provide insightful guidance to interface design for solar energy-conversion systems.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKf3XvYH2Jk0jUsvR5lOmChM8bKcnCZtR7eUJBP67-224p1X54X3g8NDyD2jM0YT9gjoZ9sOcZYpKnnKL8iEZTyJ56kQl386nV-TG--3lApOGZ-Q6s2WhxZCs6-ij9oGq1uNwVms9a5BaKNvCNrFm65twim0wND8NKGPVB_lNbhKx5tgHVQ6yqEDPFrWRMtxBgK0vQ_-llwZaL2-G--UfD0vP_NVvH5_ec0X6xi45CFOjECZlpQBouFMchDmCZOsREChZMZKyRSTLE24EUyUWqBKkyGp5kqrTPApoedddNZ7p03RuWYHri8YLY6gigFUcQRVjKCGysO5cnLswe2HB_-P_wIlMm-P</recordid><startdate>20191127</startdate><enddate>20191127</enddate><creator>Dai, Yawen</creator><creator>Cheng, Ping</creator><creator>Xie, Guancai</creator><creator>Li, Chengcheng</creator><creator>Akram, Muhammad Zain</creator><creator>Guo, Beidou</creator><creator>Boddula, Rajender</creator><creator>Shi, Xinghua</creator><creator>Gong, Jinlong</creator><creator>Gong, Jian Ru</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7263-318X</orcidid><orcidid>https://orcid.org/0000-0002-3291-5200</orcidid><orcidid>https://orcid.org/0000-0003-1512-4762</orcidid><orcidid>https://orcid.org/0000-0001-8533-3338</orcidid></search><sort><creationdate>20191127</creationdate><title>Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts</title><author>Dai, Yawen ; Cheng, Ping ; Xie, Guancai ; Li, Chengcheng ; Akram, Muhammad Zain ; Guo, Beidou ; Boddula, Rajender ; Shi, Xinghua ; Gong, Jinlong ; Gong, Jian Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-2f5c84d01accf3183a5f6c29dcac5b891d81b181423f515de5cb42f31b7beb953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Yawen</creatorcontrib><creatorcontrib>Cheng, Ping</creatorcontrib><creatorcontrib>Xie, Guancai</creatorcontrib><creatorcontrib>Li, Chengcheng</creatorcontrib><creatorcontrib>Akram, Muhammad Zain</creatorcontrib><creatorcontrib>Guo, Beidou</creatorcontrib><creatorcontrib>Boddula, Rajender</creatorcontrib><creatorcontrib>Shi, Xinghua</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><creatorcontrib>Gong, Jian Ru</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Yawen</au><au>Cheng, Ping</au><au>Xie, Guancai</au><au>Li, Chengcheng</au><au>Akram, Muhammad Zain</au><au>Guo, Beidou</au><au>Boddula, Rajender</au><au>Shi, Xinghua</au><au>Gong, Jinlong</au><au>Gong, Jian Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-11-27</date><risdate>2019</risdate><volume>123</volume><issue>47</issue><spage>28753</spage><epage>28762</epage><pages>28753-28762</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Electrocatalysts (ECs) are indispensable for high-efficiency photoelectrochemical (PEC) water splitting, but the underlying mechanism for performance modulation is still not clear. Taking the α-Fe2O3 semiconductor (SC) decorated with the cobalt oxide ECs as the model photoanode system, we demonstrate the opposite changes of PEC water oxidation activities by tuning the charge-storage capacity of ECs. Holes stored in the EC can increase the hole density on the photoanode surface, which can benefit the multihole surface water oxidation reaction, as well as aggravate the SC–EC interfacial charge recombination due to the Coulomb attraction. Both experimental and theoretical data prove that the EC with low hole-storage capacity brings limited interfacial charge recombination, enabling faster hole injection to improve the water oxidation activity. In contrast, the EC with high hole-storage capacity causes severe interfacial charge recombination, hindering the hole injection, thus decreasing the water oxidation activity. As a result, the PEC activity of photoanodes changes nonmonotonically with increasing surface hole density. This study can provide insightful guidance to interface design for solar energy-conversion systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b08343</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7263-318X</orcidid><orcidid>https://orcid.org/0000-0002-3291-5200</orcidid><orcidid>https://orcid.org/0000-0003-1512-4762</orcidid><orcidid>https://orcid.org/0000-0001-8533-3338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2019-11, Vol.123 (47), p.28753-28762
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_9b08343
source ACS Publications
title Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20Photoelectrochemical%20Water-Splitting%20Activity%20by%20Charge-Storage%20Capacity%20of%20Electrocatalysts&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Dai,%20Yawen&rft.date=2019-11-27&rft.volume=123&rft.issue=47&rft.spage=28753&rft.epage=28762&rft.pages=28753-28762&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b08343&rft_dat=%3Cacs_cross%3Ea236744105%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true