Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations
Heat of adsorption is an important factor in determining the utility of a porous material for gas separation and storage applications. Although theoretically the heat of adsorption can depend on temperature, it is common practice to assume that this dependence is so weak that it can be ignored. In t...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2019-08, Vol.123 (33), p.20405-20412 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20412 |
---|---|
container_issue | 33 |
container_start_page | 20405 |
container_title | Journal of physical chemistry. C |
container_volume | 123 |
creator | Hyla, Alexander S Fang, Hanjun Boulfelfel, Salah Eddine Muraro, Giovanni Paur, Charanjit Strohmaier, Karl Ravikovitch, Peter I Sholl, David S |
description | Heat of adsorption is an important factor in determining the utility of a porous material for gas separation and storage applications. Although theoretically the heat of adsorption can depend on temperature, it is common practice to assume that this dependence is so weak that it can be ignored. In this paper, we challenge this common wisdom. We simulated the adsorption isotherms and heats of adsorption of small molecules (CO2, CH4, and N2) in reference siliceous (LTA, CHA, MFI) and cation-exchanged (LTA-4A, Na-LTA Si/Al = 2,5) zeolites and found very significant temperature dependence of the isosteric heat of adsorption for CO2 at low loadings for some systems. In cation-exchanged LTA zeolites, we found more than a 15 kJ/mol decrease over a 300 K range (∼30% variation). We also found remarkable temperature dependence for CO2 in some siliceous zeolites with eight-membered-ring windows (e.g., ITQ-29). A weak temperature dependence was observed for CO2 on silica MFI and for CH4 and N2 adsorption in all materials. Concurrent adsorption microcalorimetry measurements on cationic 4A and siliceous ITQ-29 (LTA) zeolites fully support the theoretical predictions. Our results demonstrate how the temperature dependence of the isosteric heat is related on the microscopic level to the redistribution of adsorption sites with changes in temperature. A wider implication of our findings is that many porous materials exhibit distinct populations of adsorption sites that can lead to significant temperature dependence of the isosteric heats of adsorption. Therefore, care should be exercised when reporting isosteric heats of adsorption on such materials. For some systems, the significant temperature dependence of the isosteric heats of adsorption may need to be accounted for in process design. |
doi_str_mv | 10.1021/acs.jpcc.9b05758 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_9b05758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a229311339</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-232e20d1ea58eab4ad5a1a894f3f470d56c3f64c0c807eeb94220c307ed922d13</originalsourceid><addsrcrecordid>eNp1UL1OwzAYtBBIlMLO6AcgxT9Jk4xVW9pKRQwtC0vk2F_AVWJHtivR1-CJcaBiY7r7fu50OoTuKZlQwuijkH5y6KWclDXJ8qy4QCNacpbkaZZd_vE0v0Y33h8IyTihfIS-dvrd6EZLYQLeQ9eDE-HoAC-gB6PASMC2weED8MZbH8Bpidcggh_WM-Wt64O2ZphWwoPH2uA3sK0OkS-gs8aHaAkK1ye8_Iz-ugMT5cIo_GxbkMdWOLzTXcTByd-iq0a0Hu7OOEavT8v9fJ1sX1ab-WybCE7zkDDOgBFFQWQFiDoVKhNUFGXa8CbNicqmkjfTVBJZkBygLlPGiOSRq5IxRfkYkV9f6az3Dpqqj9mEO1WUVEOnVey0Gjqtzp1GycOv5Odij87EgP-_fwMdS36r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations</title><source>ACS Publications</source><creator>Hyla, Alexander S ; Fang, Hanjun ; Boulfelfel, Salah Eddine ; Muraro, Giovanni ; Paur, Charanjit ; Strohmaier, Karl ; Ravikovitch, Peter I ; Sholl, David S</creator><creatorcontrib>Hyla, Alexander S ; Fang, Hanjun ; Boulfelfel, Salah Eddine ; Muraro, Giovanni ; Paur, Charanjit ; Strohmaier, Karl ; Ravikovitch, Peter I ; Sholl, David S</creatorcontrib><description>Heat of adsorption is an important factor in determining the utility of a porous material for gas separation and storage applications. Although theoretically the heat of adsorption can depend on temperature, it is common practice to assume that this dependence is so weak that it can be ignored. In this paper, we challenge this common wisdom. We simulated the adsorption isotherms and heats of adsorption of small molecules (CO2, CH4, and N2) in reference siliceous (LTA, CHA, MFI) and cation-exchanged (LTA-4A, Na-LTA Si/Al = 2,5) zeolites and found very significant temperature dependence of the isosteric heat of adsorption for CO2 at low loadings for some systems. In cation-exchanged LTA zeolites, we found more than a 15 kJ/mol decrease over a 300 K range (∼30% variation). We also found remarkable temperature dependence for CO2 in some siliceous zeolites with eight-membered-ring windows (e.g., ITQ-29). A weak temperature dependence was observed for CO2 on silica MFI and for CH4 and N2 adsorption in all materials. Concurrent adsorption microcalorimetry measurements on cationic 4A and siliceous ITQ-29 (LTA) zeolites fully support the theoretical predictions. Our results demonstrate how the temperature dependence of the isosteric heat is related on the microscopic level to the redistribution of adsorption sites with changes in temperature. A wider implication of our findings is that many porous materials exhibit distinct populations of adsorption sites that can lead to significant temperature dependence of the isosteric heats of adsorption. Therefore, care should be exercised when reporting isosteric heats of adsorption on such materials. For some systems, the significant temperature dependence of the isosteric heats of adsorption may need to be accounted for in process design.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b05758</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2019-08, Vol.123 (33), p.20405-20412</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-232e20d1ea58eab4ad5a1a894f3f470d56c3f64c0c807eeb94220c307ed922d13</citedby><cites>FETCH-LOGICAL-a317t-232e20d1ea58eab4ad5a1a894f3f470d56c3f64c0c807eeb94220c307ed922d13</cites><orcidid>0000-0001-6762-7850 ; 0000-0002-2771-9168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b05758$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b05758$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Hyla, Alexander S</creatorcontrib><creatorcontrib>Fang, Hanjun</creatorcontrib><creatorcontrib>Boulfelfel, Salah Eddine</creatorcontrib><creatorcontrib>Muraro, Giovanni</creatorcontrib><creatorcontrib>Paur, Charanjit</creatorcontrib><creatorcontrib>Strohmaier, Karl</creatorcontrib><creatorcontrib>Ravikovitch, Peter I</creatorcontrib><creatorcontrib>Sholl, David S</creatorcontrib><title>Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Heat of adsorption is an important factor in determining the utility of a porous material for gas separation and storage applications. Although theoretically the heat of adsorption can depend on temperature, it is common practice to assume that this dependence is so weak that it can be ignored. In this paper, we challenge this common wisdom. We simulated the adsorption isotherms and heats of adsorption of small molecules (CO2, CH4, and N2) in reference siliceous (LTA, CHA, MFI) and cation-exchanged (LTA-4A, Na-LTA Si/Al = 2,5) zeolites and found very significant temperature dependence of the isosteric heat of adsorption for CO2 at low loadings for some systems. In cation-exchanged LTA zeolites, we found more than a 15 kJ/mol decrease over a 300 K range (∼30% variation). We also found remarkable temperature dependence for CO2 in some siliceous zeolites with eight-membered-ring windows (e.g., ITQ-29). A weak temperature dependence was observed for CO2 on silica MFI and for CH4 and N2 adsorption in all materials. Concurrent adsorption microcalorimetry measurements on cationic 4A and siliceous ITQ-29 (LTA) zeolites fully support the theoretical predictions. Our results demonstrate how the temperature dependence of the isosteric heat is related on the microscopic level to the redistribution of adsorption sites with changes in temperature. A wider implication of our findings is that many porous materials exhibit distinct populations of adsorption sites that can lead to significant temperature dependence of the isosteric heats of adsorption. Therefore, care should be exercised when reporting isosteric heats of adsorption on such materials. For some systems, the significant temperature dependence of the isosteric heats of adsorption may need to be accounted for in process design.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UL1OwzAYtBBIlMLO6AcgxT9Jk4xVW9pKRQwtC0vk2F_AVWJHtivR1-CJcaBiY7r7fu50OoTuKZlQwuijkH5y6KWclDXJ8qy4QCNacpbkaZZd_vE0v0Y33h8IyTihfIS-dvrd6EZLYQLeQ9eDE-HoAC-gB6PASMC2weED8MZbH8Bpidcggh_WM-Wt64O2ZphWwoPH2uA3sK0OkS-gs8aHaAkK1ye8_Iz-ugMT5cIo_GxbkMdWOLzTXcTByd-iq0a0Hu7OOEavT8v9fJ1sX1ab-WybCE7zkDDOgBFFQWQFiDoVKhNUFGXa8CbNicqmkjfTVBJZkBygLlPGiOSRq5IxRfkYkV9f6az3Dpqqj9mEO1WUVEOnVey0Gjqtzp1GycOv5Odij87EgP-_fwMdS36r</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Hyla, Alexander S</creator><creator>Fang, Hanjun</creator><creator>Boulfelfel, Salah Eddine</creator><creator>Muraro, Giovanni</creator><creator>Paur, Charanjit</creator><creator>Strohmaier, Karl</creator><creator>Ravikovitch, Peter I</creator><creator>Sholl, David S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6762-7850</orcidid><orcidid>https://orcid.org/0000-0002-2771-9168</orcidid></search><sort><creationdate>20190822</creationdate><title>Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations</title><author>Hyla, Alexander S ; Fang, Hanjun ; Boulfelfel, Salah Eddine ; Muraro, Giovanni ; Paur, Charanjit ; Strohmaier, Karl ; Ravikovitch, Peter I ; Sholl, David S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-232e20d1ea58eab4ad5a1a894f3f470d56c3f64c0c807eeb94220c307ed922d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyla, Alexander S</creatorcontrib><creatorcontrib>Fang, Hanjun</creatorcontrib><creatorcontrib>Boulfelfel, Salah Eddine</creatorcontrib><creatorcontrib>Muraro, Giovanni</creatorcontrib><creatorcontrib>Paur, Charanjit</creatorcontrib><creatorcontrib>Strohmaier, Karl</creatorcontrib><creatorcontrib>Ravikovitch, Peter I</creatorcontrib><creatorcontrib>Sholl, David S</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyla, Alexander S</au><au>Fang, Hanjun</au><au>Boulfelfel, Salah Eddine</au><au>Muraro, Giovanni</au><au>Paur, Charanjit</au><au>Strohmaier, Karl</au><au>Ravikovitch, Peter I</au><au>Sholl, David S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>123</volume><issue>33</issue><spage>20405</spage><epage>20412</epage><pages>20405-20412</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Heat of adsorption is an important factor in determining the utility of a porous material for gas separation and storage applications. Although theoretically the heat of adsorption can depend on temperature, it is common practice to assume that this dependence is so weak that it can be ignored. In this paper, we challenge this common wisdom. We simulated the adsorption isotherms and heats of adsorption of small molecules (CO2, CH4, and N2) in reference siliceous (LTA, CHA, MFI) and cation-exchanged (LTA-4A, Na-LTA Si/Al = 2,5) zeolites and found very significant temperature dependence of the isosteric heat of adsorption for CO2 at low loadings for some systems. In cation-exchanged LTA zeolites, we found more than a 15 kJ/mol decrease over a 300 K range (∼30% variation). We also found remarkable temperature dependence for CO2 in some siliceous zeolites with eight-membered-ring windows (e.g., ITQ-29). A weak temperature dependence was observed for CO2 on silica MFI and for CH4 and N2 adsorption in all materials. Concurrent adsorption microcalorimetry measurements on cationic 4A and siliceous ITQ-29 (LTA) zeolites fully support the theoretical predictions. Our results demonstrate how the temperature dependence of the isosteric heat is related on the microscopic level to the redistribution of adsorption sites with changes in temperature. A wider implication of our findings is that many porous materials exhibit distinct populations of adsorption sites that can lead to significant temperature dependence of the isosteric heats of adsorption. Therefore, care should be exercised when reporting isosteric heats of adsorption on such materials. For some systems, the significant temperature dependence of the isosteric heats of adsorption may need to be accounted for in process design.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b05758</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6762-7850</orcidid><orcidid>https://orcid.org/0000-0002-2771-9168</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2019-08, Vol.123 (33), p.20405-20412 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_9b05758 |
source | ACS Publications |
title | Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Significant%20Temperature%20Dependence%20of%20the%20Isosteric%20Heats%20of%20Adsorption%20of%20Gases%20in%20Zeolites%20Demonstrated%20by%20Experiments%20and%20Molecular%20Simulations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hyla,%20Alexander%20S&rft.date=2019-08-22&rft.volume=123&rft.issue=33&rft.spage=20405&rft.epage=20412&rft.pages=20405-20412&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b05758&rft_dat=%3Cacs_cross%3Ea229311339%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |