Correlation between Chemical Bond Cleavage and Detonation of ε‑2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane

Researchers have been striving to determine the connection between the microscopic chemical reactions and macroscopic detonation laws of explosives. In this study, we performed reactive molecular dynamics simulations of the shock-induced explosion of the 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-04, Vol.123 (15), p.9756-9763
Hauptverfasser: Liu, Danyang, Chen, Lang, Geng, Deshen, Lu, Jianying, Wu, Junying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9763
container_issue 15
container_start_page 9756
container_title Journal of physical chemistry. C
container_volume 123
creator Liu, Danyang
Chen, Lang
Geng, Deshen
Lu, Jianying
Wu, Junying
description Researchers have been striving to determine the connection between the microscopic chemical reactions and macroscopic detonation laws of explosives. In this study, we performed reactive molecular dynamics simulations of the shock-induced explosion of the 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane explosive. The results show that detonation is mainly determined by the rapid irreversible cleavage of the C–N and C–H bonds. Such C–N and C–H bond cleavages determine the early formation of N2 and H2O. The detonation reaction occurs when the cleavage rates exceed 3.11 and 4.15%/ps for the C–N and C–H bonds, respectively. A higher shock velocity results in higher cleavage rates of these bonds, but it also leads to more atoms being trapped in clusters. However, the decomposition rate of these clusters is mainly affected by the decrease in the density, not by the shock velocity, indicating that the late detonation reaction is mainly based on the characteristics of the explosive.
doi_str_mv 10.1021/acs.jpcc.9b01975
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_9b01975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a78100277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-231c78a3ac5deed7a81009c7f3246fe2d4aacca6a0650de7b218874cefc3e5de3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWwZ5kDJGVsJ3GyhPBTpEpsYB1NnQlNlcaV7VLoiitwGK7BITgJKa3YsZo3mvdGTx9j5xxGHAS_QO1G86XWo3wKPFfJARvwXIpIxUly-KdjdcxOnJsDJBK4HLBFYaylFn1jumBKfk3UBcWMFo3GNrgyXRUULeELPlOA_XJN3nQ7t6mDr8_v9w8RxmEaZiGHkItoTK_YNd6aWS9wg40z65X1m8ZjR6fsqMbW0dl-DtnT7c1jMY4mD3f3xeUkQpGBj4TkWmUoUScVUaUw4wC5VrUUcVqTqGJErTFFSBOoSE0FzzIVa6q1pD4ihwx2f7U1zlmqy6VtFmjfSg7lFlfZ4yq3uMo9rj4S7iK_F7OyXV_wf_sPWFBxbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correlation between Chemical Bond Cleavage and Detonation of ε‑2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane</title><source>ACS Publications</source><creator>Liu, Danyang ; Chen, Lang ; Geng, Deshen ; Lu, Jianying ; Wu, Junying</creator><creatorcontrib>Liu, Danyang ; Chen, Lang ; Geng, Deshen ; Lu, Jianying ; Wu, Junying</creatorcontrib><description>Researchers have been striving to determine the connection between the microscopic chemical reactions and macroscopic detonation laws of explosives. In this study, we performed reactive molecular dynamics simulations of the shock-induced explosion of the 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane explosive. The results show that detonation is mainly determined by the rapid irreversible cleavage of the C–N and C–H bonds. Such C–N and C–H bond cleavages determine the early formation of N2 and H2O. The detonation reaction occurs when the cleavage rates exceed 3.11 and 4.15%/ps for the C–N and C–H bonds, respectively. A higher shock velocity results in higher cleavage rates of these bonds, but it also leads to more atoms being trapped in clusters. However, the decomposition rate of these clusters is mainly affected by the decrease in the density, not by the shock velocity, indicating that the late detonation reaction is mainly based on the characteristics of the explosive.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b01975</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2019-04, Vol.123 (15), p.9756-9763</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-231c78a3ac5deed7a81009c7f3246fe2d4aacca6a0650de7b218874cefc3e5de3</citedby><cites>FETCH-LOGICAL-a280t-231c78a3ac5deed7a81009c7f3246fe2d4aacca6a0650de7b218874cefc3e5de3</cites><orcidid>0000-0003-2623-1061 ; 0000-0002-8990-8511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b01975$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b01975$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Chen, Lang</creatorcontrib><creatorcontrib>Geng, Deshen</creatorcontrib><creatorcontrib>Lu, Jianying</creatorcontrib><creatorcontrib>Wu, Junying</creatorcontrib><title>Correlation between Chemical Bond Cleavage and Detonation of ε‑2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Researchers have been striving to determine the connection between the microscopic chemical reactions and macroscopic detonation laws of explosives. In this study, we performed reactive molecular dynamics simulations of the shock-induced explosion of the 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane explosive. The results show that detonation is mainly determined by the rapid irreversible cleavage of the C–N and C–H bonds. Such C–N and C–H bond cleavages determine the early formation of N2 and H2O. The detonation reaction occurs when the cleavage rates exceed 3.11 and 4.15%/ps for the C–N and C–H bonds, respectively. A higher shock velocity results in higher cleavage rates of these bonds, but it also leads to more atoms being trapped in clusters. However, the decomposition rate of these clusters is mainly affected by the decrease in the density, not by the shock velocity, indicating that the late detonation reaction is mainly based on the characteristics of the explosive.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWwZ5kDJGVsJ3GyhPBTpEpsYB1NnQlNlcaV7VLoiitwGK7BITgJKa3YsZo3mvdGTx9j5xxGHAS_QO1G86XWo3wKPFfJARvwXIpIxUly-KdjdcxOnJsDJBK4HLBFYaylFn1jumBKfk3UBcWMFo3GNrgyXRUULeELPlOA_XJN3nQ7t6mDr8_v9w8RxmEaZiGHkItoTK_YNd6aWS9wg40z65X1m8ZjR6fsqMbW0dl-DtnT7c1jMY4mD3f3xeUkQpGBj4TkWmUoUScVUaUw4wC5VrUUcVqTqGJErTFFSBOoSE0FzzIVa6q1pD4ihwx2f7U1zlmqy6VtFmjfSg7lFlfZ4yq3uMo9rj4S7iK_F7OyXV_wf_sPWFBxbQ</recordid><startdate>20190418</startdate><enddate>20190418</enddate><creator>Liu, Danyang</creator><creator>Chen, Lang</creator><creator>Geng, Deshen</creator><creator>Lu, Jianying</creator><creator>Wu, Junying</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2623-1061</orcidid><orcidid>https://orcid.org/0000-0002-8990-8511</orcidid></search><sort><creationdate>20190418</creationdate><title>Correlation between Chemical Bond Cleavage and Detonation of ε‑2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane</title><author>Liu, Danyang ; Chen, Lang ; Geng, Deshen ; Lu, Jianying ; Wu, Junying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-231c78a3ac5deed7a81009c7f3246fe2d4aacca6a0650de7b218874cefc3e5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Chen, Lang</creatorcontrib><creatorcontrib>Geng, Deshen</creatorcontrib><creatorcontrib>Lu, Jianying</creatorcontrib><creatorcontrib>Wu, Junying</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Danyang</au><au>Chen, Lang</au><au>Geng, Deshen</au><au>Lu, Jianying</au><au>Wu, Junying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between Chemical Bond Cleavage and Detonation of ε‑2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-04-18</date><risdate>2019</risdate><volume>123</volume><issue>15</issue><spage>9756</spage><epage>9763</epage><pages>9756-9763</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Researchers have been striving to determine the connection between the microscopic chemical reactions and macroscopic detonation laws of explosives. In this study, we performed reactive molecular dynamics simulations of the shock-induced explosion of the 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane explosive. The results show that detonation is mainly determined by the rapid irreversible cleavage of the C–N and C–H bonds. Such C–N and C–H bond cleavages determine the early formation of N2 and H2O. The detonation reaction occurs when the cleavage rates exceed 3.11 and 4.15%/ps for the C–N and C–H bonds, respectively. A higher shock velocity results in higher cleavage rates of these bonds, but it also leads to more atoms being trapped in clusters. However, the decomposition rate of these clusters is mainly affected by the decrease in the density, not by the shock velocity, indicating that the late detonation reaction is mainly based on the characteristics of the explosive.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b01975</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2623-1061</orcidid><orcidid>https://orcid.org/0000-0002-8990-8511</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2019-04, Vol.123 (15), p.9756-9763
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_9b01975
source ACS Publications
title Correlation between Chemical Bond Cleavage and Detonation of ε‑2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20Chemical%20Bond%20Cleavage%20and%20Detonation%20of%20%CE%B5%E2%80%912,4,6,8,10,12-Hexanitrohexaazaisowurtzitane&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Liu,%20Danyang&rft.date=2019-04-18&rft.volume=123&rft.issue=15&rft.spage=9756&rft.epage=9763&rft.pages=9756-9763&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b01975&rft_dat=%3Cacs_cross%3Ea78100277%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true