Correlation between Chemical Bond Cleavage and Detonation of ε‑2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane

Researchers have been striving to determine the connection between the microscopic chemical reactions and macroscopic detonation laws of explosives. In this study, we performed reactive molecular dynamics simulations of the shock-induced explosion of the 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-04, Vol.123 (15), p.9756-9763
Hauptverfasser: Liu, Danyang, Chen, Lang, Geng, Deshen, Lu, Jianying, Wu, Junying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Researchers have been striving to determine the connection between the microscopic chemical reactions and macroscopic detonation laws of explosives. In this study, we performed reactive molecular dynamics simulations of the shock-induced explosion of the 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane explosive. The results show that detonation is mainly determined by the rapid irreversible cleavage of the C–N and C–H bonds. Such C–N and C–H bond cleavages determine the early formation of N2 and H2O. The detonation reaction occurs when the cleavage rates exceed 3.11 and 4.15%/ps for the C–N and C–H bonds, respectively. A higher shock velocity results in higher cleavage rates of these bonds, but it also leads to more atoms being trapped in clusters. However, the decomposition rate of these clusters is mainly affected by the decrease in the density, not by the shock velocity, indicating that the late detonation reaction is mainly based on the characteristics of the explosive.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.9b01975