Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111)
Pt–Fe bimetallic alloys are important model catalysts for a number of catalytic reactions. Combining scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we have studied the structures of Pt–Fe surface alloys prepared on Pt(111) under a variety of conditions. Although the...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2019-07, Vol.123 (28), p.17225-17231 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17231 |
---|---|
container_issue | 28 |
container_start_page | 17225 |
container_title | Journal of physical chemistry. C |
container_volume | 123 |
creator | Chen, Hao Wang, Rui Huang, Rong Zhao, Changbao Li, Yangsheng Gong, Zhongmiao Yao, Yunxi Cui, Yi Yang, Fan Bao, Xinhe |
description | Pt–Fe bimetallic alloys are important model catalysts for a number of catalytic reactions. Combining scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we have studied the structures of Pt–Fe surface alloys prepared on Pt(111) under a variety of conditions. Although the surface and subsurface structures of the Pt–Fe surface alloy could be varied with the deposition amount of Fe atoms and the annealing temperature, a characteristic alloy surface with a bright striped pattern could be identified, which consists of a Pt-dominant surface layer with a small percentage of Fe atoms in the form of isolated atoms or clusters in the surface lattice and a subsurface layer with an ordered Pt3Fe alloy structure. The bright stripes observed in STM were surface dislocations caused by stress relaxation owing to the lattice mismatch between the surface and subsurface layers. This characteristic alloy surface could be prepared on Pt(111) by depositing sub-monolayer Fe at ∼460 K to facilitate Fe diffusion in the near-surface region, or annealing multilayer Fe at ∼700 K, to enhance bulk diffusion of Fe atoms. The synthesis of this Pt–Fe alloy surface with well-defined structures could allow for further model catalytic studies. |
doi_str_mv | 10.1021/acs.jpcc.9b01626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_9b01626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286855745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-935cc783a2dbd6b37f926a7b97264ee5e3c13656ba18875af1b144230e2611123</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j3us4NZMskl2j6VYLRQUqueQpFls2W5qsjn05jv4hn0SU7t48zQz_N_M8P8I3QIeAybwoEwYb3bGjCuNgRN-hgZQUZKLgrHzv74Ql-gqhA3GjGKgAzRfRl8rYzPVrrJl1KEfl52PpovehszVWfdhs9fu8PU9S0pPTJrG7TPXJmEEAHfX6KJWTbA3fR2i99nj2_Q5X7w8zaeTRa4o0C6vKDNGlFSRlV5xTUVdEa6ErgThhbXMUgOUM64VlKVgqgYNRUEotoSnN4QO0eh0d-fdZ7Shk9t1MLZpVGtdDJKQkpeMJd8JxSfUeBeCt7Xc-fVW-b0ELI-pyZSaPKYm-9TSyv1p5Vdx0bfJy__4DzlEbu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2286855745</pqid></control><display><type>article</type><title>Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111)</title><source>American Chemical Society Journals</source><creator>Chen, Hao ; Wang, Rui ; Huang, Rong ; Zhao, Changbao ; Li, Yangsheng ; Gong, Zhongmiao ; Yao, Yunxi ; Cui, Yi ; Yang, Fan ; Bao, Xinhe</creator><creatorcontrib>Chen, Hao ; Wang, Rui ; Huang, Rong ; Zhao, Changbao ; Li, Yangsheng ; Gong, Zhongmiao ; Yao, Yunxi ; Cui, Yi ; Yang, Fan ; Bao, Xinhe</creatorcontrib><description>Pt–Fe bimetallic alloys are important model catalysts for a number of catalytic reactions. Combining scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we have studied the structures of Pt–Fe surface alloys prepared on Pt(111) under a variety of conditions. Although the surface and subsurface structures of the Pt–Fe surface alloy could be varied with the deposition amount of Fe atoms and the annealing temperature, a characteristic alloy surface with a bright striped pattern could be identified, which consists of a Pt-dominant surface layer with a small percentage of Fe atoms in the form of isolated atoms or clusters in the surface lattice and a subsurface layer with an ordered Pt3Fe alloy structure. The bright stripes observed in STM were surface dislocations caused by stress relaxation owing to the lattice mismatch between the surface and subsurface layers. This characteristic alloy surface could be prepared on Pt(111) by depositing sub-monolayer Fe at ∼460 K to facilitate Fe diffusion in the near-surface region, or annealing multilayer Fe at ∼700 K, to enhance bulk diffusion of Fe atoms. The synthesis of this Pt–Fe alloy surface with well-defined structures could allow for further model catalytic studies.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b01626</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>alloys ; annealing ; catalysts ; catalytic activity ; iron ; physical chemistry ; platinum ; scanning tunneling microscopy ; stress relaxation ; temperature ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of physical chemistry. C, 2019-07, Vol.123 (28), p.17225-17231</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-935cc783a2dbd6b37f926a7b97264ee5e3c13656ba18875af1b144230e2611123</citedby><cites>FETCH-LOGICAL-a313t-935cc783a2dbd6b37f926a7b97264ee5e3c13656ba18875af1b144230e2611123</cites><orcidid>0000-0002-1406-9717 ; 0000-0001-9404-6429 ; 0000-0002-9182-9038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b01626$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b01626$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Zhao, Changbao</creatorcontrib><creatorcontrib>Li, Yangsheng</creatorcontrib><creatorcontrib>Gong, Zhongmiao</creatorcontrib><creatorcontrib>Yao, Yunxi</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><title>Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111)</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Pt–Fe bimetallic alloys are important model catalysts for a number of catalytic reactions. Combining scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we have studied the structures of Pt–Fe surface alloys prepared on Pt(111) under a variety of conditions. Although the surface and subsurface structures of the Pt–Fe surface alloy could be varied with the deposition amount of Fe atoms and the annealing temperature, a characteristic alloy surface with a bright striped pattern could be identified, which consists of a Pt-dominant surface layer with a small percentage of Fe atoms in the form of isolated atoms or clusters in the surface lattice and a subsurface layer with an ordered Pt3Fe alloy structure. The bright stripes observed in STM were surface dislocations caused by stress relaxation owing to the lattice mismatch between the surface and subsurface layers. This characteristic alloy surface could be prepared on Pt(111) by depositing sub-monolayer Fe at ∼460 K to facilitate Fe diffusion in the near-surface region, or annealing multilayer Fe at ∼700 K, to enhance bulk diffusion of Fe atoms. The synthesis of this Pt–Fe alloy surface with well-defined structures could allow for further model catalytic studies.</description><subject>alloys</subject><subject>annealing</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>iron</subject><subject>physical chemistry</subject><subject>platinum</subject><subject>scanning tunneling microscopy</subject><subject>stress relaxation</subject><subject>temperature</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKt3j3us4NZMskl2j6VYLRQUqueQpFls2W5qsjn05jv4hn0SU7t48zQz_N_M8P8I3QIeAybwoEwYb3bGjCuNgRN-hgZQUZKLgrHzv74Ql-gqhA3GjGKgAzRfRl8rYzPVrrJl1KEfl52PpovehszVWfdhs9fu8PU9S0pPTJrG7TPXJmEEAHfX6KJWTbA3fR2i99nj2_Q5X7w8zaeTRa4o0C6vKDNGlFSRlV5xTUVdEa6ErgThhbXMUgOUM64VlKVgqgYNRUEotoSnN4QO0eh0d-fdZ7Shk9t1MLZpVGtdDJKQkpeMJd8JxSfUeBeCt7Xc-fVW-b0ELI-pyZSaPKYm-9TSyv1p5Vdx0bfJy__4DzlEbu0</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Chen, Hao</creator><creator>Wang, Rui</creator><creator>Huang, Rong</creator><creator>Zhao, Changbao</creator><creator>Li, Yangsheng</creator><creator>Gong, Zhongmiao</creator><creator>Yao, Yunxi</creator><creator>Cui, Yi</creator><creator>Yang, Fan</creator><creator>Bao, Xinhe</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1406-9717</orcidid><orcidid>https://orcid.org/0000-0001-9404-6429</orcidid><orcidid>https://orcid.org/0000-0002-9182-9038</orcidid></search><sort><creationdate>20190718</creationdate><title>Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111)</title><author>Chen, Hao ; Wang, Rui ; Huang, Rong ; Zhao, Changbao ; Li, Yangsheng ; Gong, Zhongmiao ; Yao, Yunxi ; Cui, Yi ; Yang, Fan ; Bao, Xinhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-935cc783a2dbd6b37f926a7b97264ee5e3c13656ba18875af1b144230e2611123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>alloys</topic><topic>annealing</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>iron</topic><topic>physical chemistry</topic><topic>platinum</topic><topic>scanning tunneling microscopy</topic><topic>stress relaxation</topic><topic>temperature</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Zhao, Changbao</creatorcontrib><creatorcontrib>Li, Yangsheng</creatorcontrib><creatorcontrib>Gong, Zhongmiao</creatorcontrib><creatorcontrib>Yao, Yunxi</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>Wang, Rui</au><au>Huang, Rong</au><au>Zhao, Changbao</au><au>Li, Yangsheng</au><au>Gong, Zhongmiao</au><au>Yao, Yunxi</au><au>Cui, Yi</au><au>Yang, Fan</au><au>Bao, Xinhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111)</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>123</volume><issue>28</issue><spage>17225</spage><epage>17231</epage><pages>17225-17231</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>Pt–Fe bimetallic alloys are important model catalysts for a number of catalytic reactions. Combining scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we have studied the structures of Pt–Fe surface alloys prepared on Pt(111) under a variety of conditions. Although the surface and subsurface structures of the Pt–Fe surface alloy could be varied with the deposition amount of Fe atoms and the annealing temperature, a characteristic alloy surface with a bright striped pattern could be identified, which consists of a Pt-dominant surface layer with a small percentage of Fe atoms in the form of isolated atoms or clusters in the surface lattice and a subsurface layer with an ordered Pt3Fe alloy structure. The bright stripes observed in STM were surface dislocations caused by stress relaxation owing to the lattice mismatch between the surface and subsurface layers. This characteristic alloy surface could be prepared on Pt(111) by depositing sub-monolayer Fe at ∼460 K to facilitate Fe diffusion in the near-surface region, or annealing multilayer Fe at ∼700 K, to enhance bulk diffusion of Fe atoms. The synthesis of this Pt–Fe alloy surface with well-defined structures could allow for further model catalytic studies.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b01626</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1406-9717</orcidid><orcidid>https://orcid.org/0000-0001-9404-6429</orcidid><orcidid>https://orcid.org/0000-0002-9182-9038</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2019-07, Vol.123 (28), p.17225-17231 |
issn | 1932-7447 1932-7455 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_9b01626 |
source | American Chemical Society Journals |
subjects | alloys annealing catalysts catalytic activity iron physical chemistry platinum scanning tunneling microscopy stress relaxation temperature X-ray photoelectron spectroscopy |
title | Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20and%20Subsurface%20Structures%20of%20the%20Pt%E2%80%93Fe%20Surface%20Alloy%20on%20Pt(111)&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Chen,%20Hao&rft.date=2019-07-18&rft.volume=123&rft.issue=28&rft.spage=17225&rft.epage=17231&rft.pages=17225-17231&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b01626&rft_dat=%3Cproquest_cross%3E2286855745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2286855745&rft_id=info:pmid/&rfr_iscdi=true |