Machine Learning-Aided Design of Materials with Target Elastic Properties

A set of universal descriptors which combines atomic properties with crystal fingerprint are presented to build interpretable models for elastic property prediction. Using the well-performed model, 100 materials with large predicted elastic moduli are screened out and then validated by the first-pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-02, Vol.123 (8), p.5042-5047
Hauptverfasser: Zeng, Shuming, Li, Geng, Zhao, Yinchang, Wang, Ruirui, Ni, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5047
container_issue 8
container_start_page 5042
container_title Journal of physical chemistry. C
container_volume 123
creator Zeng, Shuming
Li, Geng
Zhao, Yinchang
Wang, Ruirui
Ni, Jun
description A set of universal descriptors which combines atomic properties with crystal fingerprint are presented to build interpretable models for elastic property prediction. Using the well-performed model, 100 materials with large predicted elastic moduli are screened out and then validated by the first-principles calculations. When performing projection analysis, we find that compounds with large and small elastic moduli are clearly divided into two parts by the average value of volume and atomization enthalpy (ΔH atomic), and the relation between them is given by two discriminant equations, suggesting that compounds composed of elements with large ΔH atomic are potential large elastic moduli materials. Following this rule, we design several new stable materials like ReTcB4 and ReB which have high elastic moduli. This method is valuable for high-throughput screening and material design.
doi_str_mv 10.1021/acs.jpcc.9b01045
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_9b01045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e14453131</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-19d3c91b7950e8874b8ac6f7da61c056507e4baf6a09f25034be12647d9ee693</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqVw5-gPIGUd23F8rEqBSqng0Hu0cTatq5JEdhDi70lpxY3TjrQzo9Fj7F7ATEAqHtHF2b53bmYrEKD0BZsIK9PEKK0v_7Qy1-wmxj2AliDkhK3W6Ha-JV4Qhta322Tua6r5E0W_bXnX8DUOFDweIv_yw45vMGxp4MsDxsE7_h66nsLgKd6yq2Z00d35TtnmeblZvCbF28tqMS8SlMIMibC1dFZUxmqgPDeqytFljakxEw50psGQqrDJEGyTapCqIpFmytSWKLNyyuBU60IXY6Cm7IP_wPBdCiiPJMqRRHkkUZ5JjJGHU-T3032Gdtz3v_0Hk-Bh0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning-Aided Design of Materials with Target Elastic Properties</title><source>ACS Publications</source><creator>Zeng, Shuming ; Li, Geng ; Zhao, Yinchang ; Wang, Ruirui ; Ni, Jun</creator><creatorcontrib>Zeng, Shuming ; Li, Geng ; Zhao, Yinchang ; Wang, Ruirui ; Ni, Jun</creatorcontrib><description>A set of universal descriptors which combines atomic properties with crystal fingerprint are presented to build interpretable models for elastic property prediction. Using the well-performed model, 100 materials with large predicted elastic moduli are screened out and then validated by the first-principles calculations. When performing projection analysis, we find that compounds with large and small elastic moduli are clearly divided into two parts by the average value of volume and atomization enthalpy (ΔH atomic), and the relation between them is given by two discriminant equations, suggesting that compounds composed of elements with large ΔH atomic are potential large elastic moduli materials. Following this rule, we design several new stable materials like ReTcB4 and ReB which have high elastic moduli. This method is valuable for high-throughput screening and material design.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b01045</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2019-02, Vol.123 (8), p.5042-5047</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-19d3c91b7950e8874b8ac6f7da61c056507e4baf6a09f25034be12647d9ee693</citedby><cites>FETCH-LOGICAL-a317t-19d3c91b7950e8874b8ac6f7da61c056507e4baf6a09f25034be12647d9ee693</cites><orcidid>0000-0001-9895-4248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b01045$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b01045$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zeng, Shuming</creatorcontrib><creatorcontrib>Li, Geng</creatorcontrib><creatorcontrib>Zhao, Yinchang</creatorcontrib><creatorcontrib>Wang, Ruirui</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><title>Machine Learning-Aided Design of Materials with Target Elastic Properties</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A set of universal descriptors which combines atomic properties with crystal fingerprint are presented to build interpretable models for elastic property prediction. Using the well-performed model, 100 materials with large predicted elastic moduli are screened out and then validated by the first-principles calculations. When performing projection analysis, we find that compounds with large and small elastic moduli are clearly divided into two parts by the average value of volume and atomization enthalpy (ΔH atomic), and the relation between them is given by two discriminant equations, suggesting that compounds composed of elements with large ΔH atomic are potential large elastic moduli materials. Following this rule, we design several new stable materials like ReTcB4 and ReB which have high elastic moduli. This method is valuable for high-throughput screening and material design.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqVw5-gPIGUd23F8rEqBSqng0Hu0cTatq5JEdhDi70lpxY3TjrQzo9Fj7F7ATEAqHtHF2b53bmYrEKD0BZsIK9PEKK0v_7Qy1-wmxj2AliDkhK3W6Ha-JV4Qhta322Tua6r5E0W_bXnX8DUOFDweIv_yw45vMGxp4MsDxsE7_h66nsLgKd6yq2Z00d35TtnmeblZvCbF28tqMS8SlMIMibC1dFZUxmqgPDeqytFljakxEw50psGQqrDJEGyTapCqIpFmytSWKLNyyuBU60IXY6Cm7IP_wPBdCiiPJMqRRHkkUZ5JjJGHU-T3032Gdtz3v_0Hk-Bh0w</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Zeng, Shuming</creator><creator>Li, Geng</creator><creator>Zhao, Yinchang</creator><creator>Wang, Ruirui</creator><creator>Ni, Jun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9895-4248</orcidid></search><sort><creationdate>20190228</creationdate><title>Machine Learning-Aided Design of Materials with Target Elastic Properties</title><author>Zeng, Shuming ; Li, Geng ; Zhao, Yinchang ; Wang, Ruirui ; Ni, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-19d3c91b7950e8874b8ac6f7da61c056507e4baf6a09f25034be12647d9ee693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Shuming</creatorcontrib><creatorcontrib>Li, Geng</creatorcontrib><creatorcontrib>Zhao, Yinchang</creatorcontrib><creatorcontrib>Wang, Ruirui</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Shuming</au><au>Li, Geng</au><au>Zhao, Yinchang</au><au>Wang, Ruirui</au><au>Ni, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Aided Design of Materials with Target Elastic Properties</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>123</volume><issue>8</issue><spage>5042</spage><epage>5047</epage><pages>5042-5047</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A set of universal descriptors which combines atomic properties with crystal fingerprint are presented to build interpretable models for elastic property prediction. Using the well-performed model, 100 materials with large predicted elastic moduli are screened out and then validated by the first-principles calculations. When performing projection analysis, we find that compounds with large and small elastic moduli are clearly divided into two parts by the average value of volume and atomization enthalpy (ΔH atomic), and the relation between them is given by two discriminant equations, suggesting that compounds composed of elements with large ΔH atomic are potential large elastic moduli materials. Following this rule, we design several new stable materials like ReTcB4 and ReB which have high elastic moduli. This method is valuable for high-throughput screening and material design.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b01045</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9895-4248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2019-02, Vol.123 (8), p.5042-5047
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_9b01045
source ACS Publications
title Machine Learning-Aided Design of Materials with Target Elastic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Aided%20Design%20of%20Materials%20with%20Target%20Elastic%20Properties&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Zeng,%20Shuming&rft.date=2019-02-28&rft.volume=123&rft.issue=8&rft.spage=5042&rft.epage=5047&rft.pages=5042-5047&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b01045&rft_dat=%3Cacs_cross%3Ee14453131%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true