Superior Base Catalysis of Group 5 Hexametalates [M6O19]8– (M = Ta, Nb) over Group 6 Hexametalates [M6O19]2– (M = Mo, W)
Brønsted and Lewis base catalysis of hexametalate clusters of group 5 metals [M(V)6O19]8– (M(V) = Ta, Nb) and group 6 metals [M(VI)6O19]2– (M(VI) = Mo, W) was studied using Knoevenagel condensation and CO2 fixation reaction, respectively, as test reactions. It was found from mass spectrometry an...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2018-12, Vol.122 (51), p.29398-29404 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29404 |
---|---|
container_issue | 51 |
container_start_page | 29398 |
container_title | Journal of physical chemistry. C |
container_volume | 122 |
creator | Hayashi, Shun Sasaki, Naoto Yamazoe, Seiji Tsukuda, Tatsuya |
description | Brønsted and Lewis base catalysis of hexametalate clusters of group 5 metals [M(V)6O19]8– (M(V) = Ta, Nb) and group 6 metals [M(VI)6O19]2– (M(VI) = Mo, W) was studied using Knoevenagel condensation and CO2 fixation reaction, respectively, as test reactions. It was found from mass spectrometry and elemental analysis that tetrabutylammonium salts of [M(V)6O19]8– were partially protonated to form [H4M(V)6O19]4– under ambient conditions, whereas those of [M(VI)6O19]2– were not. Base catalytic activity increased in the order of [Mo6O19]2–, [W6O19]2– ≪ [H4Nb6O19]4– < [H4Ta6O19]4–, which is consistent with the order of the average NBO charges on the surface O atoms. This trend suggests that the highest activity of [H4Ta6O19]4– is due to the large amount of negative charges on surface O atoms. Theoretical calculations on [H n Ta6O19](8–n)– (n = 1–4) demonstrated that protonation of the O atoms at the edges is energetically favorable regardless of n and that the NBO charges on the remaining unprotonated O atoms in [H4Ta6O19]4– are still more negative than those of pristine [Nb6O19]8–, [W6O19]2–, and [Mo6O19]2–. Theoretical calculations also predicted that CO2 can be reductively activated at all of the surface O atoms of [H4Ta6O19]4– regardless of their locations. This work demonstrates that group 5 polyoxometalates are promising candidates for active base catalysts. |
doi_str_mv | 10.1021/acs.jpcc.8b10400 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_8b10400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c077539785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a276t-f4b0a5f92909154c357e0b2795666abc1670bd65799d84655f7ca7d8dadf8bb63</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3jzla6NbJ7ibZHDxo0VZo7cGKB5FlsptAS2uWpC0WPPgOvqFP4taWnvQ0A___DcNHyDmDDoOYXWIROtOqKDqZZpACHJAGU0kcyZTzw_2eymNyEsIUgCfAkgb5eFxWxk-cpzcYDO3iAmfrMAnUWdrzbllRTvvmHeemDnBhAn0ZihFTr9n35xe9GNIrOsY2fdAt6lbG7xjxNxPvmaFr0-fWKTmyOAvmbDeb5OnudtztR4NR7757PYgwlmIR2VQDcqtiBYrxtEi4NKBjqbgQAnXBhARdCi6VKrNUcG5lgbLMSixtprVImgS2dwvvQvDG5pWfzNGvcwb5xl5e28s39vKdvRppb5HfxC39W_3g__UfAgNxAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superior Base Catalysis of Group 5 Hexametalates [M6O19]8– (M = Ta, Nb) over Group 6 Hexametalates [M6O19]2– (M = Mo, W)</title><source>ACS Publications</source><creator>Hayashi, Shun ; Sasaki, Naoto ; Yamazoe, Seiji ; Tsukuda, Tatsuya</creator><creatorcontrib>Hayashi, Shun ; Sasaki, Naoto ; Yamazoe, Seiji ; Tsukuda, Tatsuya</creatorcontrib><description>Brønsted and Lewis base catalysis of hexametalate clusters of group 5 metals [M(V)6O19]8– (M(V) = Ta, Nb) and group 6 metals [M(VI)6O19]2– (M(VI) = Mo, W) was studied using Knoevenagel condensation and CO2 fixation reaction, respectively, as test reactions. It was found from mass spectrometry and elemental analysis that tetrabutylammonium salts of [M(V)6O19]8– were partially protonated to form [H4M(V)6O19]4– under ambient conditions, whereas those of [M(VI)6O19]2– were not. Base catalytic activity increased in the order of [Mo6O19]2–, [W6O19]2– ≪ [H4Nb6O19]4– < [H4Ta6O19]4–, which is consistent with the order of the average NBO charges on the surface O atoms. This trend suggests that the highest activity of [H4Ta6O19]4– is due to the large amount of negative charges on surface O atoms. Theoretical calculations on [H n Ta6O19](8–n)– (n = 1–4) demonstrated that protonation of the O atoms at the edges is energetically favorable regardless of n and that the NBO charges on the remaining unprotonated O atoms in [H4Ta6O19]4– are still more negative than those of pristine [Nb6O19]8–, [W6O19]2–, and [Mo6O19]2–. Theoretical calculations also predicted that CO2 can be reductively activated at all of the surface O atoms of [H4Ta6O19]4– regardless of their locations. This work demonstrates that group 5 polyoxometalates are promising candidates for active base catalysts.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b10400</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-12, Vol.122 (51), p.29398-29404</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a276t-f4b0a5f92909154c357e0b2795666abc1670bd65799d84655f7ca7d8dadf8bb63</citedby><cites>FETCH-LOGICAL-a276t-f4b0a5f92909154c357e0b2795666abc1670bd65799d84655f7ca7d8dadf8bb63</cites><orcidid>0000-0002-0190-6379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b10400$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b10400$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Hayashi, Shun</creatorcontrib><creatorcontrib>Sasaki, Naoto</creatorcontrib><creatorcontrib>Yamazoe, Seiji</creatorcontrib><creatorcontrib>Tsukuda, Tatsuya</creatorcontrib><title>Superior Base Catalysis of Group 5 Hexametalates [M6O19]8– (M = Ta, Nb) over Group 6 Hexametalates [M6O19]2– (M = Mo, W)</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Brønsted and Lewis base catalysis of hexametalate clusters of group 5 metals [M(V)6O19]8– (M(V) = Ta, Nb) and group 6 metals [M(VI)6O19]2– (M(VI) = Mo, W) was studied using Knoevenagel condensation and CO2 fixation reaction, respectively, as test reactions. It was found from mass spectrometry and elemental analysis that tetrabutylammonium salts of [M(V)6O19]8– were partially protonated to form [H4M(V)6O19]4– under ambient conditions, whereas those of [M(VI)6O19]2– were not. Base catalytic activity increased in the order of [Mo6O19]2–, [W6O19]2– ≪ [H4Nb6O19]4– < [H4Ta6O19]4–, which is consistent with the order of the average NBO charges on the surface O atoms. This trend suggests that the highest activity of [H4Ta6O19]4– is due to the large amount of negative charges on surface O atoms. Theoretical calculations on [H n Ta6O19](8–n)– (n = 1–4) demonstrated that protonation of the O atoms at the edges is energetically favorable regardless of n and that the NBO charges on the remaining unprotonated O atoms in [H4Ta6O19]4– are still more negative than those of pristine [Nb6O19]8–, [W6O19]2–, and [Mo6O19]2–. Theoretical calculations also predicted that CO2 can be reductively activated at all of the surface O atoms of [H4Ta6O19]4– regardless of their locations. This work demonstrates that group 5 polyoxometalates are promising candidates for active base catalysts.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKt3jzla6NbJ7ibZHDxo0VZo7cGKB5FlsptAS2uWpC0WPPgOvqFP4taWnvQ0A___DcNHyDmDDoOYXWIROtOqKDqZZpACHJAGU0kcyZTzw_2eymNyEsIUgCfAkgb5eFxWxk-cpzcYDO3iAmfrMAnUWdrzbllRTvvmHeemDnBhAn0ZihFTr9n35xe9GNIrOsY2fdAt6lbG7xjxNxPvmaFr0-fWKTmyOAvmbDeb5OnudtztR4NR7757PYgwlmIR2VQDcqtiBYrxtEi4NKBjqbgQAnXBhARdCi6VKrNUcG5lgbLMSixtprVImgS2dwvvQvDG5pWfzNGvcwb5xl5e28s39vKdvRppb5HfxC39W_3g__UfAgNxAA</recordid><startdate>20181227</startdate><enddate>20181227</enddate><creator>Hayashi, Shun</creator><creator>Sasaki, Naoto</creator><creator>Yamazoe, Seiji</creator><creator>Tsukuda, Tatsuya</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0190-6379</orcidid></search><sort><creationdate>20181227</creationdate><title>Superior Base Catalysis of Group 5 Hexametalates [M6O19]8– (M = Ta, Nb) over Group 6 Hexametalates [M6O19]2– (M = Mo, W)</title><author>Hayashi, Shun ; Sasaki, Naoto ; Yamazoe, Seiji ; Tsukuda, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a276t-f4b0a5f92909154c357e0b2795666abc1670bd65799d84655f7ca7d8dadf8bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Shun</creatorcontrib><creatorcontrib>Sasaki, Naoto</creatorcontrib><creatorcontrib>Yamazoe, Seiji</creatorcontrib><creatorcontrib>Tsukuda, Tatsuya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Shun</au><au>Sasaki, Naoto</au><au>Yamazoe, Seiji</au><au>Tsukuda, Tatsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Base Catalysis of Group 5 Hexametalates [M6O19]8– (M = Ta, Nb) over Group 6 Hexametalates [M6O19]2– (M = Mo, W)</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-12-27</date><risdate>2018</risdate><volume>122</volume><issue>51</issue><spage>29398</spage><epage>29404</epage><pages>29398-29404</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Brønsted and Lewis base catalysis of hexametalate clusters of group 5 metals [M(V)6O19]8– (M(V) = Ta, Nb) and group 6 metals [M(VI)6O19]2– (M(VI) = Mo, W) was studied using Knoevenagel condensation and CO2 fixation reaction, respectively, as test reactions. It was found from mass spectrometry and elemental analysis that tetrabutylammonium salts of [M(V)6O19]8– were partially protonated to form [H4M(V)6O19]4– under ambient conditions, whereas those of [M(VI)6O19]2– were not. Base catalytic activity increased in the order of [Mo6O19]2–, [W6O19]2– ≪ [H4Nb6O19]4– < [H4Ta6O19]4–, which is consistent with the order of the average NBO charges on the surface O atoms. This trend suggests that the highest activity of [H4Ta6O19]4– is due to the large amount of negative charges on surface O atoms. Theoretical calculations on [H n Ta6O19](8–n)– (n = 1–4) demonstrated that protonation of the O atoms at the edges is energetically favorable regardless of n and that the NBO charges on the remaining unprotonated O atoms in [H4Ta6O19]4– are still more negative than those of pristine [Nb6O19]8–, [W6O19]2–, and [Mo6O19]2–. Theoretical calculations also predicted that CO2 can be reductively activated at all of the surface O atoms of [H4Ta6O19]4– regardless of their locations. This work demonstrates that group 5 polyoxometalates are promising candidates for active base catalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b10400</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0190-6379</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2018-12, Vol.122 (51), p.29398-29404 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_8b10400 |
source | ACS Publications |
title | Superior Base Catalysis of Group 5 Hexametalates [M6O19]8– (M = Ta, Nb) over Group 6 Hexametalates [M6O19]2– (M = Mo, W) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Base%20Catalysis%20of%20Group%205%20Hexametalates%20%5BM6O19%5D8%E2%80%93%20(M%20=%20Ta,%20Nb)%20over%20Group%206%20Hexametalates%20%5BM6O19%5D2%E2%80%93%20(M%20=%20Mo,%20W)&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hayashi,%20Shun&rft.date=2018-12-27&rft.volume=122&rft.issue=51&rft.spage=29398&rft.epage=29404&rft.pages=29398-29404&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b10400&rft_dat=%3Cacs_cross%3Ec077539785%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |