Raman Spectra of Nonpolar Crystalline Nanoparticles: Elasticity Theory-like Approach for Optical Phonons

A simple way to investigate theoretically the Raman spectra (RS) of nonpolar nanoparticles is proposed. For this aim, we substitute the original lattice optical phonon eigenproblem by the continuous Klein–Fock–Gordon-like equation with Dirichlet boundary conditions. This approach provides the basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-10, Vol.122 (39), p.22738-22749
Hauptverfasser: Utesov, Oleg I, Yashenkin, Andrey G, Koniakhin, Sergei V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22749
container_issue 39
container_start_page 22738
container_title Journal of physical chemistry. C
container_volume 122
creator Utesov, Oleg I
Yashenkin, Andrey G
Koniakhin, Sergei V
description A simple way to investigate theoretically the Raman spectra (RS) of nonpolar nanoparticles is proposed. For this aim, we substitute the original lattice optical phonon eigenproblem by the continuous Klein–Fock–Gordon-like equation with Dirichlet boundary conditions. This approach provides the basis for the continuous description of optical phonons in the same manner how the elasticity theory describes the longwavelength acoustic phonons. Together with continuous reformulation of the bond polarization model, it allows one to calculate the RS of nanoparticles without referring to their atomistic structure. It ensures a powerful tool for interpreting the experimental data, studying the effects of particle shape and their size distribution. We successfully fit recent experimental data on very small diamond and silicon particles, for which the commonly used phonon confinement model fails. The predictions of our theory are compared with recent results obtained with the dynamical matrix method-bond polarization model approach, and an excellent agreement between them is found. The advantages of the present theory are its simplicity and the rapidity of calculations. We analyze how the RS are affected by the nanoparticle faceting and propose a simple power law for Raman peak position dependence on the facet number. The method of powder RS calculations is formulated, and the limitations on the accuracy of our analysis are discussed.
doi_str_mv 10.1021/acs.jpcc.8b07061
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_8b07061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d210454517</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-2e35ce6edec0c94337d85fea880cd8bd986fc31298796bb831c54265a779650d3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqVw5-gPIMGO48ThVkWlIFUtgnKONo6jpLi2ZYdD_p6UVtw47ax2ZjV6CN1TElOS0EeQId47KWNRk5xk9ALNaMGSKE85v_zTaX6NbkLYE8IZoWyGunc4gMEfTsnBA7Yt3ljjrAaPSz-GAbTujcIbMNaBH3qpVXjCSw1h0v0w4l2nrB8j3X8pvHDOW5Adbq3HWzc5QOO3zhprwi26akEHdXeec_T5vNyVL9F6u3otF-sIEkGGKFGMS5WpRkkii5SxvBG8VSAEkY2om0JkrWQ0KUReZHUtGJU8TTIO-bRz0rA5Iqe_0tsQvGor5_sD-LGipDqSqiZS1ZFUdSY1RR5Okd-L_fZmKvi__QeWr26H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Raman Spectra of Nonpolar Crystalline Nanoparticles: Elasticity Theory-like Approach for Optical Phonons</title><source>ACS Publications</source><creator>Utesov, Oleg I ; Yashenkin, Andrey G ; Koniakhin, Sergei V</creator><creatorcontrib>Utesov, Oleg I ; Yashenkin, Andrey G ; Koniakhin, Sergei V</creatorcontrib><description>A simple way to investigate theoretically the Raman spectra (RS) of nonpolar nanoparticles is proposed. For this aim, we substitute the original lattice optical phonon eigenproblem by the continuous Klein–Fock–Gordon-like equation with Dirichlet boundary conditions. This approach provides the basis for the continuous description of optical phonons in the same manner how the elasticity theory describes the longwavelength acoustic phonons. Together with continuous reformulation of the bond polarization model, it allows one to calculate the RS of nanoparticles without referring to their atomistic structure. It ensures a powerful tool for interpreting the experimental data, studying the effects of particle shape and their size distribution. We successfully fit recent experimental data on very small diamond and silicon particles, for which the commonly used phonon confinement model fails. The predictions of our theory are compared with recent results obtained with the dynamical matrix method-bond polarization model approach, and an excellent agreement between them is found. The advantages of the present theory are its simplicity and the rapidity of calculations. We analyze how the RS are affected by the nanoparticle faceting and propose a simple power law for Raman peak position dependence on the facet number. The method of powder RS calculations is formulated, and the limitations on the accuracy of our analysis are discussed.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b07061</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-10, Vol.122 (39), p.22738-22749</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-2e35ce6edec0c94337d85fea880cd8bd986fc31298796bb831c54265a779650d3</citedby><cites>FETCH-LOGICAL-a280t-2e35ce6edec0c94337d85fea880cd8bd986fc31298796bb831c54265a779650d3</cites><orcidid>0000-0001-5323-8192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b07061$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b07061$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Utesov, Oleg I</creatorcontrib><creatorcontrib>Yashenkin, Andrey G</creatorcontrib><creatorcontrib>Koniakhin, Sergei V</creatorcontrib><title>Raman Spectra of Nonpolar Crystalline Nanoparticles: Elasticity Theory-like Approach for Optical Phonons</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A simple way to investigate theoretically the Raman spectra (RS) of nonpolar nanoparticles is proposed. For this aim, we substitute the original lattice optical phonon eigenproblem by the continuous Klein–Fock–Gordon-like equation with Dirichlet boundary conditions. This approach provides the basis for the continuous description of optical phonons in the same manner how the elasticity theory describes the longwavelength acoustic phonons. Together with continuous reformulation of the bond polarization model, it allows one to calculate the RS of nanoparticles without referring to their atomistic structure. It ensures a powerful tool for interpreting the experimental data, studying the effects of particle shape and their size distribution. We successfully fit recent experimental data on very small diamond and silicon particles, for which the commonly used phonon confinement model fails. The predictions of our theory are compared with recent results obtained with the dynamical matrix method-bond polarization model approach, and an excellent agreement between them is found. The advantages of the present theory are its simplicity and the rapidity of calculations. We analyze how the RS are affected by the nanoparticle faceting and propose a simple power law for Raman peak position dependence on the facet number. The method of powder RS calculations is formulated, and the limitations on the accuracy of our analysis are discussed.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqVw5-gPIMGO48ThVkWlIFUtgnKONo6jpLi2ZYdD_p6UVtw47ax2ZjV6CN1TElOS0EeQId47KWNRk5xk9ALNaMGSKE85v_zTaX6NbkLYE8IZoWyGunc4gMEfTsnBA7Yt3ljjrAaPSz-GAbTujcIbMNaBH3qpVXjCSw1h0v0w4l2nrB8j3X8pvHDOW5Adbq3HWzc5QOO3zhprwi26akEHdXeec_T5vNyVL9F6u3otF-sIEkGGKFGMS5WpRkkii5SxvBG8VSAEkY2om0JkrWQ0KUReZHUtGJU8TTIO-bRz0rA5Iqe_0tsQvGor5_sD-LGipDqSqiZS1ZFUdSY1RR5Okd-L_fZmKvi__QeWr26H</recordid><startdate>20181004</startdate><enddate>20181004</enddate><creator>Utesov, Oleg I</creator><creator>Yashenkin, Andrey G</creator><creator>Koniakhin, Sergei V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5323-8192</orcidid></search><sort><creationdate>20181004</creationdate><title>Raman Spectra of Nonpolar Crystalline Nanoparticles: Elasticity Theory-like Approach for Optical Phonons</title><author>Utesov, Oleg I ; Yashenkin, Andrey G ; Koniakhin, Sergei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-2e35ce6edec0c94337d85fea880cd8bd986fc31298796bb831c54265a779650d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utesov, Oleg I</creatorcontrib><creatorcontrib>Yashenkin, Andrey G</creatorcontrib><creatorcontrib>Koniakhin, Sergei V</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utesov, Oleg I</au><au>Yashenkin, Andrey G</au><au>Koniakhin, Sergei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman Spectra of Nonpolar Crystalline Nanoparticles: Elasticity Theory-like Approach for Optical Phonons</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-10-04</date><risdate>2018</risdate><volume>122</volume><issue>39</issue><spage>22738</spage><epage>22749</epage><pages>22738-22749</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A simple way to investigate theoretically the Raman spectra (RS) of nonpolar nanoparticles is proposed. For this aim, we substitute the original lattice optical phonon eigenproblem by the continuous Klein–Fock–Gordon-like equation with Dirichlet boundary conditions. This approach provides the basis for the continuous description of optical phonons in the same manner how the elasticity theory describes the longwavelength acoustic phonons. Together with continuous reformulation of the bond polarization model, it allows one to calculate the RS of nanoparticles without referring to their atomistic structure. It ensures a powerful tool for interpreting the experimental data, studying the effects of particle shape and their size distribution. We successfully fit recent experimental data on very small diamond and silicon particles, for which the commonly used phonon confinement model fails. The predictions of our theory are compared with recent results obtained with the dynamical matrix method-bond polarization model approach, and an excellent agreement between them is found. The advantages of the present theory are its simplicity and the rapidity of calculations. We analyze how the RS are affected by the nanoparticle faceting and propose a simple power law for Raman peak position dependence on the facet number. The method of powder RS calculations is formulated, and the limitations on the accuracy of our analysis are discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b07061</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5323-8192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-10, Vol.122 (39), p.22738-22749
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_8b07061
source ACS Publications
title Raman Spectra of Nonpolar Crystalline Nanoparticles: Elasticity Theory-like Approach for Optical Phonons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20Spectra%20of%20Nonpolar%20Crystalline%20Nanoparticles:%20Elasticity%20Theory-like%20Approach%20for%20Optical%20Phonons&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Utesov,%20Oleg%20I&rft.date=2018-10-04&rft.volume=122&rft.issue=39&rft.spage=22738&rft.epage=22749&rft.pages=22738-22749&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b07061&rft_dat=%3Cacs_cross%3Ed210454517%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true