Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions

The availability of purely semiconducting single-walled carbon nanotube (s-SWCNT) dispersions has prompted their widespread application in solution-processed thin-film transistors with excellent device performance but has also raised the question of how their precise composition influences charge tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-08, Vol.122 (34), p.19886-19896
Hauptverfasser: Brohmann, Maximilian, Rother, Marcel, Schießl, Stefan P, Preis, Eduard, Allard, Sybille, Scherf, Ullrich, Zaumseil, Jana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19896
container_issue 34
container_start_page 19886
container_title Journal of physical chemistry. C
container_volume 122
creator Brohmann, Maximilian
Rother, Marcel
Schießl, Stefan P
Preis, Eduard
Allard, Sybille
Scherf, Ullrich
Zaumseil, Jana
description The availability of purely semiconducting single-walled carbon nanotube (s-SWCNT) dispersions has prompted their widespread application in solution-processed thin-film transistors with excellent device performance but has also raised the question of how their precise composition influences charge transport properties in random networks. Here, we compare hole and electron transport in three different polymer-sorted s-SWCNT networks from nearly monochiral (6,5) nanotubes (diameter 0.76 nm) to mixed networks of s-SWCNTs with medium (0.8–1.3 nm) and large (1.2–1.6 nm) diameters. Temperature-dependent field-effect mobilities are extracted from gated four-point probe measurements that exclude any contributions by contact resistance and indicate thermally activated transport. The mobility data can be fitted to the fluctuation-induced tunneling model, although with significant differences between the network compositions. The network with the broadest diameter and thus bandgap range results in the strongest temperature dependence in agreement with numerical simulations based on a random resistor model of nanotube junctions. However, the experimental data for mixed networks of large diameter nanotubes and their deviation from the simple junction model implies a significant contribution of intra-nanotube transport with its specific diameter and temperature dependence to the overall charge transport properties of the network.
doi_str_mv 10.1021/acs.jpcc.8b04302
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_8b04302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c616801714</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-2319e15ff2a3df0b7233e59eb81ea2db8cd46c54695fafc3089fa2e51eff2fa03</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHIMU_cZMcUcqfVBWklnPkOOvWpbEj21HVF-C5SaHixmlntTuj0YfQLSUTShi9lypMtp1Sk7wmKSfsDI1owVmSpUKc_-k0u0RXIWwJEZxQPkJfK2g78DL2HpIZdGAbsBGXG-nXgFde2tA5H7Gx-N3tDi34ZDns0OAltEY52_QqGrvGpfS1s3ghrYt9DXgBce_8Z8B7Ezd4ZrQGf0yeGdlCBD-IEL2p-2icDdfoQstdgJvTHKOPp8dV-ZLM355fy4d5IjnNYsI4LYAKrZnkjSZ1xjgHUUCdU5CsqXPVpFMl0mkhtNSKk7zQkoGgMFi0JHyMyG-u8i4ED7rqvGmlP1SUVEeO1cCxOnKsThwHy92v5efiem-Hgv-_fwN83nuN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions</title><source>ACS Publications</source><creator>Brohmann, Maximilian ; Rother, Marcel ; Schießl, Stefan P ; Preis, Eduard ; Allard, Sybille ; Scherf, Ullrich ; Zaumseil, Jana</creator><creatorcontrib>Brohmann, Maximilian ; Rother, Marcel ; Schießl, Stefan P ; Preis, Eduard ; Allard, Sybille ; Scherf, Ullrich ; Zaumseil, Jana</creatorcontrib><description>The availability of purely semiconducting single-walled carbon nanotube (s-SWCNT) dispersions has prompted their widespread application in solution-processed thin-film transistors with excellent device performance but has also raised the question of how their precise composition influences charge transport properties in random networks. Here, we compare hole and electron transport in three different polymer-sorted s-SWCNT networks from nearly monochiral (6,5) nanotubes (diameter 0.76 nm) to mixed networks of s-SWCNTs with medium (0.8–1.3 nm) and large (1.2–1.6 nm) diameters. Temperature-dependent field-effect mobilities are extracted from gated four-point probe measurements that exclude any contributions by contact resistance and indicate thermally activated transport. The mobility data can be fitted to the fluctuation-induced tunneling model, although with significant differences between the network compositions. The network with the broadest diameter and thus bandgap range results in the strongest temperature dependence in agreement with numerical simulations based on a random resistor model of nanotube junctions. However, the experimental data for mixed networks of large diameter nanotubes and their deviation from the simple junction model implies a significant contribution of intra-nanotube transport with its specific diameter and temperature dependence to the overall charge transport properties of the network.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b04302</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-08, Vol.122 (34), p.19886-19896</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-2319e15ff2a3df0b7233e59eb81ea2db8cd46c54695fafc3089fa2e51eff2fa03</citedby><cites>FETCH-LOGICAL-a317t-2319e15ff2a3df0b7233e59eb81ea2db8cd46c54695fafc3089fa2e51eff2fa03</cites><orcidid>0000-0002-2048-217X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b04302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b04302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Brohmann, Maximilian</creatorcontrib><creatorcontrib>Rother, Marcel</creatorcontrib><creatorcontrib>Schießl, Stefan P</creatorcontrib><creatorcontrib>Preis, Eduard</creatorcontrib><creatorcontrib>Allard, Sybille</creatorcontrib><creatorcontrib>Scherf, Ullrich</creatorcontrib><creatorcontrib>Zaumseil, Jana</creatorcontrib><title>Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The availability of purely semiconducting single-walled carbon nanotube (s-SWCNT) dispersions has prompted their widespread application in solution-processed thin-film transistors with excellent device performance but has also raised the question of how their precise composition influences charge transport properties in random networks. Here, we compare hole and electron transport in three different polymer-sorted s-SWCNT networks from nearly monochiral (6,5) nanotubes (diameter 0.76 nm) to mixed networks of s-SWCNTs with medium (0.8–1.3 nm) and large (1.2–1.6 nm) diameters. Temperature-dependent field-effect mobilities are extracted from gated four-point probe measurements that exclude any contributions by contact resistance and indicate thermally activated transport. The mobility data can be fitted to the fluctuation-induced tunneling model, although with significant differences between the network compositions. The network with the broadest diameter and thus bandgap range results in the strongest temperature dependence in agreement with numerical simulations based on a random resistor model of nanotube junctions. However, the experimental data for mixed networks of large diameter nanotubes and their deviation from the simple junction model implies a significant contribution of intra-nanotube transport with its specific diameter and temperature dependence to the overall charge transport properties of the network.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHIMU_cZMcUcqfVBWklnPkOOvWpbEj21HVF-C5SaHixmlntTuj0YfQLSUTShi9lypMtp1Sk7wmKSfsDI1owVmSpUKc_-k0u0RXIWwJEZxQPkJfK2g78DL2HpIZdGAbsBGXG-nXgFde2tA5H7Gx-N3tDi34ZDns0OAltEY52_QqGrvGpfS1s3ghrYt9DXgBce_8Z8B7Ezd4ZrQGf0yeGdlCBD-IEL2p-2icDdfoQstdgJvTHKOPp8dV-ZLM355fy4d5IjnNYsI4LYAKrZnkjSZ1xjgHUUCdU5CsqXPVpFMl0mkhtNSKk7zQkoGgMFi0JHyMyG-u8i4ED7rqvGmlP1SUVEeO1cCxOnKsThwHy92v5efiem-Hgv-_fwN83nuN</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Brohmann, Maximilian</creator><creator>Rother, Marcel</creator><creator>Schießl, Stefan P</creator><creator>Preis, Eduard</creator><creator>Allard, Sybille</creator><creator>Scherf, Ullrich</creator><creator>Zaumseil, Jana</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2048-217X</orcidid></search><sort><creationdate>20180830</creationdate><title>Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions</title><author>Brohmann, Maximilian ; Rother, Marcel ; Schießl, Stefan P ; Preis, Eduard ; Allard, Sybille ; Scherf, Ullrich ; Zaumseil, Jana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-2319e15ff2a3df0b7233e59eb81ea2db8cd46c54695fafc3089fa2e51eff2fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brohmann, Maximilian</creatorcontrib><creatorcontrib>Rother, Marcel</creatorcontrib><creatorcontrib>Schießl, Stefan P</creatorcontrib><creatorcontrib>Preis, Eduard</creatorcontrib><creatorcontrib>Allard, Sybille</creatorcontrib><creatorcontrib>Scherf, Ullrich</creatorcontrib><creatorcontrib>Zaumseil, Jana</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brohmann, Maximilian</au><au>Rother, Marcel</au><au>Schießl, Stefan P</au><au>Preis, Eduard</au><au>Allard, Sybille</au><au>Scherf, Ullrich</au><au>Zaumseil, Jana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-08-30</date><risdate>2018</risdate><volume>122</volume><issue>34</issue><spage>19886</spage><epage>19896</epage><pages>19886-19896</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The availability of purely semiconducting single-walled carbon nanotube (s-SWCNT) dispersions has prompted their widespread application in solution-processed thin-film transistors with excellent device performance but has also raised the question of how their precise composition influences charge transport properties in random networks. Here, we compare hole and electron transport in three different polymer-sorted s-SWCNT networks from nearly monochiral (6,5) nanotubes (diameter 0.76 nm) to mixed networks of s-SWCNTs with medium (0.8–1.3 nm) and large (1.2–1.6 nm) diameters. Temperature-dependent field-effect mobilities are extracted from gated four-point probe measurements that exclude any contributions by contact resistance and indicate thermally activated transport. The mobility data can be fitted to the fluctuation-induced tunneling model, although with significant differences between the network compositions. The network with the broadest diameter and thus bandgap range results in the strongest temperature dependence in agreement with numerical simulations based on a random resistor model of nanotube junctions. However, the experimental data for mixed networks of large diameter nanotubes and their deviation from the simple junction model implies a significant contribution of intra-nanotube transport with its specific diameter and temperature dependence to the overall charge transport properties of the network.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b04302</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2048-217X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-08, Vol.122 (34), p.19886-19896
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_8b04302
source ACS Publications
title Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Dependent%20Charge%20Transport%20in%20Polymer-Sorted%20Semiconducting%20Carbon%20Nanotube%20Networks%20with%20Different%20Diameter%20Distributions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Brohmann,%20Maximilian&rft.date=2018-08-30&rft.volume=122&rft.issue=34&rft.spage=19886&rft.epage=19896&rft.pages=19886-19896&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b04302&rft_dat=%3Cacs_cross%3Ec616801714%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true