Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays

Thermoplasmonics is a method for increasing temperature remotely using focused visible or infrared laser beams interacting with plasmonic nanoparticles. Here, local heating induced by mid-infrared quantum cascade laser illumination of vertical gold-coated nanoantenna arrays embedded into polymer lay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-06, Vol.122 (24), p.13072-13081
Hauptverfasser: Mancini, Andrea, Giliberti, Valeria, Alabastri, Alessandro, Calandrini, Eugenio, De Angelis, Francesco, Garoli, Denis, Ortolani, Michele
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13081
container_issue 24
container_start_page 13072
container_title Journal of physical chemistry. C
container_volume 122
creator Mancini, Andrea
Giliberti, Valeria
Alabastri, Alessandro
Calandrini, Eugenio
De Angelis, Francesco
Garoli, Denis
Ortolani, Michele
description Thermoplasmonics is a method for increasing temperature remotely using focused visible or infrared laser beams interacting with plasmonic nanoparticles. Here, local heating induced by mid-infrared quantum cascade laser illumination of vertical gold-coated nanoantenna arrays embedded into polymer layers is investigated by infrared nanospectroscopy and electromagnetic/thermal simulations. Nanoscale thermal hotspot images are obtained by a photothermal scanning probe microscopy technique with laser illumination wavelength tuned at the different plasmonic resonances of the arrays. Spectral analysis indicates that both Joule heating by the metal antennas and surface-enhanced infrared absorption (SEIRA) by the polymer molecules located in the apical hotspots of the antennas are responsible for thermoplasmonic resonances, that is, for strong local temperature increase. At odds with more conventional planar nanoantennas, the vertical antenna structure enables thermal decoupling of the hotspot at the antenna apex from the heat sink constituted by the solid substrate. The temperature increase was evaluated by quantitative comparison of data obtained with the photothermal expansion technique to the results of electromagnetic/thermal simulations. In the case of strong SEIRA by the CO bond of poly-methylmethacrylate at 1730 cm–1, for focused mid-infrared laser power of about 20 mW, the evaluated order of magnitude of the nanoscale temperature increase is of 10 K. This result indicates that temperature increases of the order of hundreds of K may be attainable with full mid-infrared laser power tuned at specific molecule vibrational fingerprints.
doi_str_mv 10.1021/acs.jpcc.8b03808
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_8b03808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b645970429</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-be263c0c3ae64fafff100f7f3d13e09ad909c63199293a6b43eb161ab6cf04e93</originalsourceid><addsrcrecordid>eNp1kEFPwkAQhTdGExG9e9wfYHG22xb2SAgKCdGD6M000-1OKIHdZrYc-PcWId48zUvmvZeXT4hHBSMFqXpGG0fb1trRpAI9gcmVGCij02Sc5fn1n87Gt-Iuxi1ArkHpgfhebxzvQ7vDuA--sXJO5GwnA8mPAxNal8z9Br11tVx6YuReTKsYuO2a4GXj5ZfjrrG4k2_oA_rOeY9yyozHeC9uCHfRPVzuUHy-zNezRbJ6f13OpqsEszTvksqlhbZgNboiIyQiBUBj0rXSDgzWBowttDImNRqLKtOuUoXCqrAEmTN6KODcaznEyI7Klps98rFUUJ7wlD2e8oSnvODpI0_nyO8nHNj3A_-3_wBoDGr5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays</title><source>ACS Publications</source><creator>Mancini, Andrea ; Giliberti, Valeria ; Alabastri, Alessandro ; Calandrini, Eugenio ; De Angelis, Francesco ; Garoli, Denis ; Ortolani, Michele</creator><creatorcontrib>Mancini, Andrea ; Giliberti, Valeria ; Alabastri, Alessandro ; Calandrini, Eugenio ; De Angelis, Francesco ; Garoli, Denis ; Ortolani, Michele</creatorcontrib><description>Thermoplasmonics is a method for increasing temperature remotely using focused visible or infrared laser beams interacting with plasmonic nanoparticles. Here, local heating induced by mid-infrared quantum cascade laser illumination of vertical gold-coated nanoantenna arrays embedded into polymer layers is investigated by infrared nanospectroscopy and electromagnetic/thermal simulations. Nanoscale thermal hotspot images are obtained by a photothermal scanning probe microscopy technique with laser illumination wavelength tuned at the different plasmonic resonances of the arrays. Spectral analysis indicates that both Joule heating by the metal antennas and surface-enhanced infrared absorption (SEIRA) by the polymer molecules located in the apical hotspots of the antennas are responsible for thermoplasmonic resonances, that is, for strong local temperature increase. At odds with more conventional planar nanoantennas, the vertical antenna structure enables thermal decoupling of the hotspot at the antenna apex from the heat sink constituted by the solid substrate. The temperature increase was evaluated by quantitative comparison of data obtained with the photothermal expansion technique to the results of electromagnetic/thermal simulations. In the case of strong SEIRA by the CO bond of poly-methylmethacrylate at 1730 cm–1, for focused mid-infrared laser power of about 20 mW, the evaluated order of magnitude of the nanoscale temperature increase is of 10 K. This result indicates that temperature increases of the order of hundreds of K may be attainable with full mid-infrared laser power tuned at specific molecule vibrational fingerprints.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b03808</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-06, Vol.122 (24), p.13072-13081</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-be263c0c3ae64fafff100f7f3d13e09ad909c63199293a6b43eb161ab6cf04e93</citedby><cites>FETCH-LOGICAL-a425t-be263c0c3ae64fafff100f7f3d13e09ad909c63199293a6b43eb161ab6cf04e93</cites><orcidid>0000-0001-6180-8052 ; 0000-0001-6053-2488 ; 0000-0002-7203-5355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b03808$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b03808$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Mancini, Andrea</creatorcontrib><creatorcontrib>Giliberti, Valeria</creatorcontrib><creatorcontrib>Alabastri, Alessandro</creatorcontrib><creatorcontrib>Calandrini, Eugenio</creatorcontrib><creatorcontrib>De Angelis, Francesco</creatorcontrib><creatorcontrib>Garoli, Denis</creatorcontrib><creatorcontrib>Ortolani, Michele</creatorcontrib><title>Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Thermoplasmonics is a method for increasing temperature remotely using focused visible or infrared laser beams interacting with plasmonic nanoparticles. Here, local heating induced by mid-infrared quantum cascade laser illumination of vertical gold-coated nanoantenna arrays embedded into polymer layers is investigated by infrared nanospectroscopy and electromagnetic/thermal simulations. Nanoscale thermal hotspot images are obtained by a photothermal scanning probe microscopy technique with laser illumination wavelength tuned at the different plasmonic resonances of the arrays. Spectral analysis indicates that both Joule heating by the metal antennas and surface-enhanced infrared absorption (SEIRA) by the polymer molecules located in the apical hotspots of the antennas are responsible for thermoplasmonic resonances, that is, for strong local temperature increase. At odds with more conventional planar nanoantennas, the vertical antenna structure enables thermal decoupling of the hotspot at the antenna apex from the heat sink constituted by the solid substrate. The temperature increase was evaluated by quantitative comparison of data obtained with the photothermal expansion technique to the results of electromagnetic/thermal simulations. In the case of strong SEIRA by the CO bond of poly-methylmethacrylate at 1730 cm–1, for focused mid-infrared laser power of about 20 mW, the evaluated order of magnitude of the nanoscale temperature increase is of 10 K. This result indicates that temperature increases of the order of hundreds of K may be attainable with full mid-infrared laser power tuned at specific molecule vibrational fingerprints.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwkAQhTdGExG9e9wfYHG22xb2SAgKCdGD6M000-1OKIHdZrYc-PcWId48zUvmvZeXT4hHBSMFqXpGG0fb1trRpAI9gcmVGCij02Sc5fn1n87Gt-Iuxi1ArkHpgfhebxzvQ7vDuA--sXJO5GwnA8mPAxNal8z9Br11tVx6YuReTKsYuO2a4GXj5ZfjrrG4k2_oA_rOeY9yyozHeC9uCHfRPVzuUHy-zNezRbJ6f13OpqsEszTvksqlhbZgNboiIyQiBUBj0rXSDgzWBowttDImNRqLKtOuUoXCqrAEmTN6KODcaznEyI7Klps98rFUUJ7wlD2e8oSnvODpI0_nyO8nHNj3A_-3_wBoDGr5</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Mancini, Andrea</creator><creator>Giliberti, Valeria</creator><creator>Alabastri, Alessandro</creator><creator>Calandrini, Eugenio</creator><creator>De Angelis, Francesco</creator><creator>Garoli, Denis</creator><creator>Ortolani, Michele</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6180-8052</orcidid><orcidid>https://orcid.org/0000-0001-6053-2488</orcidid><orcidid>https://orcid.org/0000-0002-7203-5355</orcidid></search><sort><creationdate>20180621</creationdate><title>Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays</title><author>Mancini, Andrea ; Giliberti, Valeria ; Alabastri, Alessandro ; Calandrini, Eugenio ; De Angelis, Francesco ; Garoli, Denis ; Ortolani, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-be263c0c3ae64fafff100f7f3d13e09ad909c63199293a6b43eb161ab6cf04e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mancini, Andrea</creatorcontrib><creatorcontrib>Giliberti, Valeria</creatorcontrib><creatorcontrib>Alabastri, Alessandro</creatorcontrib><creatorcontrib>Calandrini, Eugenio</creatorcontrib><creatorcontrib>De Angelis, Francesco</creatorcontrib><creatorcontrib>Garoli, Denis</creatorcontrib><creatorcontrib>Ortolani, Michele</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mancini, Andrea</au><au>Giliberti, Valeria</au><au>Alabastri, Alessandro</au><au>Calandrini, Eugenio</au><au>De Angelis, Francesco</au><au>Garoli, Denis</au><au>Ortolani, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-06-21</date><risdate>2018</risdate><volume>122</volume><issue>24</issue><spage>13072</spage><epage>13081</epage><pages>13072-13081</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Thermoplasmonics is a method for increasing temperature remotely using focused visible or infrared laser beams interacting with plasmonic nanoparticles. Here, local heating induced by mid-infrared quantum cascade laser illumination of vertical gold-coated nanoantenna arrays embedded into polymer layers is investigated by infrared nanospectroscopy and electromagnetic/thermal simulations. Nanoscale thermal hotspot images are obtained by a photothermal scanning probe microscopy technique with laser illumination wavelength tuned at the different plasmonic resonances of the arrays. Spectral analysis indicates that both Joule heating by the metal antennas and surface-enhanced infrared absorption (SEIRA) by the polymer molecules located in the apical hotspots of the antennas are responsible for thermoplasmonic resonances, that is, for strong local temperature increase. At odds with more conventional planar nanoantennas, the vertical antenna structure enables thermal decoupling of the hotspot at the antenna apex from the heat sink constituted by the solid substrate. The temperature increase was evaluated by quantitative comparison of data obtained with the photothermal expansion technique to the results of electromagnetic/thermal simulations. In the case of strong SEIRA by the CO bond of poly-methylmethacrylate at 1730 cm–1, for focused mid-infrared laser power of about 20 mW, the evaluated order of magnitude of the nanoscale temperature increase is of 10 K. This result indicates that temperature increases of the order of hundreds of K may be attainable with full mid-infrared laser power tuned at specific molecule vibrational fingerprints.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b03808</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6180-8052</orcidid><orcidid>https://orcid.org/0000-0001-6053-2488</orcidid><orcidid>https://orcid.org/0000-0002-7203-5355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-06, Vol.122 (24), p.13072-13081
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_8b03808
source ACS Publications
title Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoplasmonic%20Effect%20of%20Surface-Enhanced%20Infrared%20Absorption%20in%20Vertical%20Nanoantenna%20Arrays&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Mancini,%20Andrea&rft.date=2018-06-21&rft.volume=122&rft.issue=24&rft.spage=13072&rft.epage=13081&rft.pages=13072-13081&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b03808&rft_dat=%3Cacs_cross%3Eb645970429%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true