Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots

The photoluminescence (PL) emission states of heteroatom-doped graphene quantum dots (GQDs) remain unknown, particularly the assignment of the low-energy excitation band (more than 330 nm). To address these issues, this work synthesized three different types of GQDs: undoped GQDs (UGQDs), nitrogen-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-03, Vol.122 (11), p.6483-6492
Hauptverfasser: Yang, Guancao, Wu, Chuanli, Luo, Xiaojun, Liu, Xiaoyan, Gao, Yuan, Wu, Ping, Cai, Chenxin, Saavedra, S. Scott
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6492
container_issue 11
container_start_page 6483
container_title Journal of physical chemistry. C
container_volume 122
creator Yang, Guancao
Wu, Chuanli
Luo, Xiaojun
Liu, Xiaoyan
Gao, Yuan
Wu, Ping
Cai, Chenxin
Saavedra, S. Scott
description The photoluminescence (PL) emission states of heteroatom-doped graphene quantum dots (GQDs) remain unknown, particularly the assignment of the low-energy excitation band (more than 330 nm). To address these issues, this work synthesized three different types of GQDs: undoped GQDs (UGQDs), nitrogen-doped GQDs (NGQDs), and boron-doped GQDs (BGQDs), with similar sizes, chemical compositions (types and compositions of surface functional groups), and defects using a constant potential electrolysis method. The PL emissive states in these GQDs and the effects of the dopant heteroatom on the PL were revealed based on the combination of spectroscopic methods and theoretical calculations. The results indicated that the GQDs exhibit multiemissive centers for the PL emission mechanism. An excitation-independent PL emission band (band I) results from a high-energy transition originating from the quantum confinement of the carbon core (carbon π–π* transitions in sp2 domain), and an excitation-dependent PL emission band (band II) originates from a low-energy edge band transition, which is attributed to radiative recombination associated with both the n−π* transition of N/O/B-containing groups and the π–π* charge transfer between the carbon core and the edge of the GQDs. Moreover, the PL emission maxima (both bands I and II) for NGQDs and BGQDs show a blue shift and a red shift, respectively, relative to UGQDs because of the doping that led to the alteration in the electronic structure and the distribution of molecular orbitals in the GQDs. These results clarify previous inconsistencies regarding the PL emission mechanism and the electronic properties of GQDs and can thus provide a foundation for the application of doped GQDs in electronics, photonics, and biology.
doi_str_mv 10.1021/acs.jpcc.8b01385
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_8b01385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a444403242</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-afbf34e4c821243dfecedaf3826034d91c01abe35ce40429616a1386fa853b23</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbvHvcDmLj_kiZHaWMqFETsPUw2szalyYbdjei3N7XFm6cZmPceb36E3HMWcyb4I2gf7wet46xmXGbJBZnxXIpooZLk8m9Xi2ty4_2esUROshkpi6_hYF3bf9CwQ1p0rfftJ9L3AAE9tYauMaCzEGwXreyADS0dDDvskb6N0Iexoysb_C25MnDweHeec7J9LrbLdbR5LV-WT5sIRMZCBKY2UqHSmeBCycagxgaMzETKpGpyrhmHGmWiUTEl8pSnMH2TGsgSWQs5J-wUq5313qGpBtd24L4rzqojh2riUB05VGcOk-XhZPm92NH1U7__5T9nOGHh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots</title><source>American Chemical Society Journals</source><creator>Yang, Guancao ; Wu, Chuanli ; Luo, Xiaojun ; Liu, Xiaoyan ; Gao, Yuan ; Wu, Ping ; Cai, Chenxin ; Saavedra, S. Scott</creator><creatorcontrib>Yang, Guancao ; Wu, Chuanli ; Luo, Xiaojun ; Liu, Xiaoyan ; Gao, Yuan ; Wu, Ping ; Cai, Chenxin ; Saavedra, S. Scott</creatorcontrib><description>The photoluminescence (PL) emission states of heteroatom-doped graphene quantum dots (GQDs) remain unknown, particularly the assignment of the low-energy excitation band (more than 330 nm). To address these issues, this work synthesized three different types of GQDs: undoped GQDs (UGQDs), nitrogen-doped GQDs (NGQDs), and boron-doped GQDs (BGQDs), with similar sizes, chemical compositions (types and compositions of surface functional groups), and defects using a constant potential electrolysis method. The PL emissive states in these GQDs and the effects of the dopant heteroatom on the PL were revealed based on the combination of spectroscopic methods and theoretical calculations. The results indicated that the GQDs exhibit multiemissive centers for the PL emission mechanism. An excitation-independent PL emission band (band I) results from a high-energy transition originating from the quantum confinement of the carbon core (carbon π–π* transitions in sp2 domain), and an excitation-dependent PL emission band (band II) originates from a low-energy edge band transition, which is attributed to radiative recombination associated with both the n−π* transition of N/O/B-containing groups and the π–π* charge transfer between the carbon core and the edge of the GQDs. Moreover, the PL emission maxima (both bands I and II) for NGQDs and BGQDs show a blue shift and a red shift, respectively, relative to UGQDs because of the doping that led to the alteration in the electronic structure and the distribution of molecular orbitals in the GQDs. These results clarify previous inconsistencies regarding the PL emission mechanism and the electronic properties of GQDs and can thus provide a foundation for the application of doped GQDs in electronics, photonics, and biology.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b01385</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-03, Vol.122 (11), p.6483-6492</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-afbf34e4c821243dfecedaf3826034d91c01abe35ce40429616a1386fa853b23</citedby><cites>FETCH-LOGICAL-a280t-afbf34e4c821243dfecedaf3826034d91c01abe35ce40429616a1386fa853b23</cites><orcidid>0000-0002-9946-2664 ; 0000-0002-3578-2415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b01385$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b01385$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Yang, Guancao</creatorcontrib><creatorcontrib>Wu, Chuanli</creatorcontrib><creatorcontrib>Luo, Xiaojun</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Wu, Ping</creatorcontrib><creatorcontrib>Cai, Chenxin</creatorcontrib><creatorcontrib>Saavedra, S. Scott</creatorcontrib><title>Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The photoluminescence (PL) emission states of heteroatom-doped graphene quantum dots (GQDs) remain unknown, particularly the assignment of the low-energy excitation band (more than 330 nm). To address these issues, this work synthesized three different types of GQDs: undoped GQDs (UGQDs), nitrogen-doped GQDs (NGQDs), and boron-doped GQDs (BGQDs), with similar sizes, chemical compositions (types and compositions of surface functional groups), and defects using a constant potential electrolysis method. The PL emissive states in these GQDs and the effects of the dopant heteroatom on the PL were revealed based on the combination of spectroscopic methods and theoretical calculations. The results indicated that the GQDs exhibit multiemissive centers for the PL emission mechanism. An excitation-independent PL emission band (band I) results from a high-energy transition originating from the quantum confinement of the carbon core (carbon π–π* transitions in sp2 domain), and an excitation-dependent PL emission band (band II) originates from a low-energy edge band transition, which is attributed to radiative recombination associated with both the n−π* transition of N/O/B-containing groups and the π–π* charge transfer between the carbon core and the edge of the GQDs. Moreover, the PL emission maxima (both bands I and II) for NGQDs and BGQDs show a blue shift and a red shift, respectively, relative to UGQDs because of the doping that led to the alteration in the electronic structure and the distribution of molecular orbitals in the GQDs. These results clarify previous inconsistencies regarding the PL emission mechanism and the electronic properties of GQDs and can thus provide a foundation for the application of doped GQDs in electronics, photonics, and biology.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbvHvcDmLj_kiZHaWMqFETsPUw2szalyYbdjei3N7XFm6cZmPceb36E3HMWcyb4I2gf7wet46xmXGbJBZnxXIpooZLk8m9Xi2ty4_2esUROshkpi6_hYF3bf9CwQ1p0rfftJ9L3AAE9tYauMaCzEGwXreyADS0dDDvskb6N0Iexoysb_C25MnDweHeec7J9LrbLdbR5LV-WT5sIRMZCBKY2UqHSmeBCycagxgaMzETKpGpyrhmHGmWiUTEl8pSnMH2TGsgSWQs5J-wUq5313qGpBtd24L4rzqojh2riUB05VGcOk-XhZPm92NH1U7__5T9nOGHh</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Yang, Guancao</creator><creator>Wu, Chuanli</creator><creator>Luo, Xiaojun</creator><creator>Liu, Xiaoyan</creator><creator>Gao, Yuan</creator><creator>Wu, Ping</creator><creator>Cai, Chenxin</creator><creator>Saavedra, S. Scott</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9946-2664</orcidid><orcidid>https://orcid.org/0000-0002-3578-2415</orcidid></search><sort><creationdate>20180322</creationdate><title>Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots</title><author>Yang, Guancao ; Wu, Chuanli ; Luo, Xiaojun ; Liu, Xiaoyan ; Gao, Yuan ; Wu, Ping ; Cai, Chenxin ; Saavedra, S. Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-afbf34e4c821243dfecedaf3826034d91c01abe35ce40429616a1386fa853b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guancao</creatorcontrib><creatorcontrib>Wu, Chuanli</creatorcontrib><creatorcontrib>Luo, Xiaojun</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Wu, Ping</creatorcontrib><creatorcontrib>Cai, Chenxin</creatorcontrib><creatorcontrib>Saavedra, S. Scott</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Guancao</au><au>Wu, Chuanli</au><au>Luo, Xiaojun</au><au>Liu, Xiaoyan</au><au>Gao, Yuan</au><au>Wu, Ping</au><au>Cai, Chenxin</au><au>Saavedra, S. Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>122</volume><issue>11</issue><spage>6483</spage><epage>6492</epage><pages>6483-6492</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The photoluminescence (PL) emission states of heteroatom-doped graphene quantum dots (GQDs) remain unknown, particularly the assignment of the low-energy excitation band (more than 330 nm). To address these issues, this work synthesized three different types of GQDs: undoped GQDs (UGQDs), nitrogen-doped GQDs (NGQDs), and boron-doped GQDs (BGQDs), with similar sizes, chemical compositions (types and compositions of surface functional groups), and defects using a constant potential electrolysis method. The PL emissive states in these GQDs and the effects of the dopant heteroatom on the PL were revealed based on the combination of spectroscopic methods and theoretical calculations. The results indicated that the GQDs exhibit multiemissive centers for the PL emission mechanism. An excitation-independent PL emission band (band I) results from a high-energy transition originating from the quantum confinement of the carbon core (carbon π–π* transitions in sp2 domain), and an excitation-dependent PL emission band (band II) originates from a low-energy edge band transition, which is attributed to radiative recombination associated with both the n−π* transition of N/O/B-containing groups and the π–π* charge transfer between the carbon core and the edge of the GQDs. Moreover, the PL emission maxima (both bands I and II) for NGQDs and BGQDs show a blue shift and a red shift, respectively, relative to UGQDs because of the doping that led to the alteration in the electronic structure and the distribution of molecular orbitals in the GQDs. These results clarify previous inconsistencies regarding the PL emission mechanism and the electronic properties of GQDs and can thus provide a foundation for the application of doped GQDs in electronics, photonics, and biology.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b01385</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9946-2664</orcidid><orcidid>https://orcid.org/0000-0002-3578-2415</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-03, Vol.122 (11), p.6483-6492
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_8b01385
source American Chemical Society Journals
title Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Emissive%20States%20of%20Heteroatom-Doped%20Graphene%20Quantum%20Dots&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Yang,%20Guancao&rft.date=2018-03-22&rft.volume=122&rft.issue=11&rft.spage=6483&rft.epage=6492&rft.pages=6483-6492&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b01385&rft_dat=%3Cacs_cross%3Ea444403242%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true