Cubic Gold Nanorattles with a Solid Octahedral Core and Porous Shell as Efficient Catalyst: Immobilization and Kinetic Analysis

Plasmonic nanostructures having porous morphology have attracted a great deal of attention in catalysis because of high surface-to-volume ratio, better surface reactivity, and availability of various structural features. We report the synthesis, immobilization, and kinetic analysis of cubic gold nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-10, Vol.121 (41), p.22914-22925
Hauptverfasser: Singh, Prem, Roy, Shounak, Jaiswal, Amit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22925
container_issue 41
container_start_page 22914
container_title Journal of physical chemistry. C
container_volume 121
creator Singh, Prem
Roy, Shounak
Jaiswal, Amit
description Plasmonic nanostructures having porous morphology have attracted a great deal of attention in catalysis because of high surface-to-volume ratio, better surface reactivity, and availability of various structural features. We report the synthesis, immobilization, and kinetic analysis of cubic gold nanorattles (AuNRTs) comprising a solid octahedral core surrounded by a thin porous cube-shaped gold shell toward the reduction of p-nitrophenol (an environmental pollutant) and degradation of organic dyes (Congo red and methylene blue) as model systems. Kinetic investigation of our study showed that AuNRTs are an excellent catalyst compared with solid silver nanocube containing an octahedral gold core (AuOCT@Ag) and gold nanospheres (AuNSs), which could be attributed to the porous structure of nanorattles with three available surfaces: outer and inner walls and inner core for catalysis. A detailed analysis of the different kinetic and thermodynamic parameters revealed that AuNRTs have the highest reaction rate constant, lowest activation energy, pre-exponential factors, and entropy of activation. Furthermore, the immobilized AuNRTs into calcium alginate beads could retain their catalytic efficiency up to 15 cycles, demonstrating high stability and reproducibility. The present system shows the ability to efficiently degrade pollutants and thus can be used for potential environmental remediation application.
doi_str_mv 10.1021/acs.jpcc.7b07748
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_7b07748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c377786017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-964b1611295ac31839fbbf42590e7d91b5254f129d778f25b9468b7caf5a51143</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKt3j_kAtia7SbPrrSy1FosVqudlkk1oSropSYrUi1_d7R-8eZqB997M44fQPSVDSjL6CCoO11ulhkISIVhxgXq0zLOBYJxf_u1MXKObGNeE8JzQvId-qp20Ck-9a_AbtD5ASk5H_GXTCgNeemcbvFAJVroJ4HDlg8bQNvjdB7-LeLnSzmGIeGKMVVa3CVeQwO1jesKzzcZL6-w3JOvbY-zVtjp1D8ftwWPjLboy4KK-O88--nyefFQvg_liOqvG8wFkBUmDcsQkHVGalRxUTou8NFIalvGSaNGUVPKMM9PJjRCFybgs2aiQQoHhwClleR-R010VfIxBm3ob7AbCvqakPgCsO4D1AWB9BthFHk6Ro-J3oasc_7f_ArnAdUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cubic Gold Nanorattles with a Solid Octahedral Core and Porous Shell as Efficient Catalyst: Immobilization and Kinetic Analysis</title><source>American Chemical Society</source><creator>Singh, Prem ; Roy, Shounak ; Jaiswal, Amit</creator><creatorcontrib>Singh, Prem ; Roy, Shounak ; Jaiswal, Amit</creatorcontrib><description>Plasmonic nanostructures having porous morphology have attracted a great deal of attention in catalysis because of high surface-to-volume ratio, better surface reactivity, and availability of various structural features. We report the synthesis, immobilization, and kinetic analysis of cubic gold nanorattles (AuNRTs) comprising a solid octahedral core surrounded by a thin porous cube-shaped gold shell toward the reduction of p-nitrophenol (an environmental pollutant) and degradation of organic dyes (Congo red and methylene blue) as model systems. Kinetic investigation of our study showed that AuNRTs are an excellent catalyst compared with solid silver nanocube containing an octahedral gold core (AuOCT@Ag) and gold nanospheres (AuNSs), which could be attributed to the porous structure of nanorattles with three available surfaces: outer and inner walls and inner core for catalysis. A detailed analysis of the different kinetic and thermodynamic parameters revealed that AuNRTs have the highest reaction rate constant, lowest activation energy, pre-exponential factors, and entropy of activation. Furthermore, the immobilized AuNRTs into calcium alginate beads could retain their catalytic efficiency up to 15 cycles, demonstrating high stability and reproducibility. The present system shows the ability to efficiently degrade pollutants and thus can be used for potential environmental remediation application.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b07748</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-10, Vol.121 (41), p.22914-22925</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-964b1611295ac31839fbbf42590e7d91b5254f129d778f25b9468b7caf5a51143</citedby><cites>FETCH-LOGICAL-a280t-964b1611295ac31839fbbf42590e7d91b5254f129d778f25b9468b7caf5a51143</cites><orcidid>0000-0002-9748-0404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b07748$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b07748$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Singh, Prem</creatorcontrib><creatorcontrib>Roy, Shounak</creatorcontrib><creatorcontrib>Jaiswal, Amit</creatorcontrib><title>Cubic Gold Nanorattles with a Solid Octahedral Core and Porous Shell as Efficient Catalyst: Immobilization and Kinetic Analysis</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Plasmonic nanostructures having porous morphology have attracted a great deal of attention in catalysis because of high surface-to-volume ratio, better surface reactivity, and availability of various structural features. We report the synthesis, immobilization, and kinetic analysis of cubic gold nanorattles (AuNRTs) comprising a solid octahedral core surrounded by a thin porous cube-shaped gold shell toward the reduction of p-nitrophenol (an environmental pollutant) and degradation of organic dyes (Congo red and methylene blue) as model systems. Kinetic investigation of our study showed that AuNRTs are an excellent catalyst compared with solid silver nanocube containing an octahedral gold core (AuOCT@Ag) and gold nanospheres (AuNSs), which could be attributed to the porous structure of nanorattles with three available surfaces: outer and inner walls and inner core for catalysis. A detailed analysis of the different kinetic and thermodynamic parameters revealed that AuNRTs have the highest reaction rate constant, lowest activation energy, pre-exponential factors, and entropy of activation. Furthermore, the immobilized AuNRTs into calcium alginate beads could retain their catalytic efficiency up to 15 cycles, demonstrating high stability and reproducibility. The present system shows the ability to efficiently degrade pollutants and thus can be used for potential environmental remediation application.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKt3j_kAtia7SbPrrSy1FosVqudlkk1oSropSYrUi1_d7R-8eZqB997M44fQPSVDSjL6CCoO11ulhkISIVhxgXq0zLOBYJxf_u1MXKObGNeE8JzQvId-qp20Ck-9a_AbtD5ASk5H_GXTCgNeemcbvFAJVroJ4HDlg8bQNvjdB7-LeLnSzmGIeGKMVVa3CVeQwO1jesKzzcZL6-w3JOvbY-zVtjp1D8ftwWPjLboy4KK-O88--nyefFQvg_liOqvG8wFkBUmDcsQkHVGalRxUTou8NFIalvGSaNGUVPKMM9PJjRCFybgs2aiQQoHhwClleR-R010VfIxBm3ob7AbCvqakPgCsO4D1AWB9BthFHk6Ro-J3oasc_7f_ArnAdUw</recordid><startdate>20171019</startdate><enddate>20171019</enddate><creator>Singh, Prem</creator><creator>Roy, Shounak</creator><creator>Jaiswal, Amit</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9748-0404</orcidid></search><sort><creationdate>20171019</creationdate><title>Cubic Gold Nanorattles with a Solid Octahedral Core and Porous Shell as Efficient Catalyst: Immobilization and Kinetic Analysis</title><author>Singh, Prem ; Roy, Shounak ; Jaiswal, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-964b1611295ac31839fbbf42590e7d91b5254f129d778f25b9468b7caf5a51143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prem</creatorcontrib><creatorcontrib>Roy, Shounak</creatorcontrib><creatorcontrib>Jaiswal, Amit</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prem</au><au>Roy, Shounak</au><au>Jaiswal, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic Gold Nanorattles with a Solid Octahedral Core and Porous Shell as Efficient Catalyst: Immobilization and Kinetic Analysis</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-10-19</date><risdate>2017</risdate><volume>121</volume><issue>41</issue><spage>22914</spage><epage>22925</epage><pages>22914-22925</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Plasmonic nanostructures having porous morphology have attracted a great deal of attention in catalysis because of high surface-to-volume ratio, better surface reactivity, and availability of various structural features. We report the synthesis, immobilization, and kinetic analysis of cubic gold nanorattles (AuNRTs) comprising a solid octahedral core surrounded by a thin porous cube-shaped gold shell toward the reduction of p-nitrophenol (an environmental pollutant) and degradation of organic dyes (Congo red and methylene blue) as model systems. Kinetic investigation of our study showed that AuNRTs are an excellent catalyst compared with solid silver nanocube containing an octahedral gold core (AuOCT@Ag) and gold nanospheres (AuNSs), which could be attributed to the porous structure of nanorattles with three available surfaces: outer and inner walls and inner core for catalysis. A detailed analysis of the different kinetic and thermodynamic parameters revealed that AuNRTs have the highest reaction rate constant, lowest activation energy, pre-exponential factors, and entropy of activation. Furthermore, the immobilized AuNRTs into calcium alginate beads could retain their catalytic efficiency up to 15 cycles, demonstrating high stability and reproducibility. The present system shows the ability to efficiently degrade pollutants and thus can be used for potential environmental remediation application.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b07748</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9748-0404</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-10, Vol.121 (41), p.22914-22925
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_7b07748
source American Chemical Society
title Cubic Gold Nanorattles with a Solid Octahedral Core and Porous Shell as Efficient Catalyst: Immobilization and Kinetic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic%20Gold%20Nanorattles%20with%20a%20Solid%20Octahedral%20Core%20and%20Porous%20Shell%20as%20Efficient%20Catalyst:%20Immobilization%20and%20Kinetic%20Analysis&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Singh,%20Prem&rft.date=2017-10-19&rft.volume=121&rft.issue=41&rft.spage=22914&rft.epage=22925&rft.pages=22914-22925&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b07748&rft_dat=%3Cacs_cross%3Ec377786017%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true